Artifact 3299bf8a7bf5d7073268ecb95dfea705b8f22515:
- File
pkcs11/pkcs11.h
— part of check-in
[ec1f93c869]
at
2010-10-15 09:53:09
on branch trunk
— Added mostly-compiling Win32 support
Added local copy of RSA PKCS#11 (user: rkeene, size: 9460) [annotate] [blame] [check-ins using]
/* ***** BEGIN COPYRIGHT BLOCK ***** * Copyright (C) 2005 Red Hat, Inc. * All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation version * 2.1 of the License. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * ***** END COPYRIGHT BLOCK *****/ /* pkcs11.h include file for PKCS #11. 2001 June 25 */ #ifndef _PKCS11_H_ #define _PKCS11_H_ 1 #ifdef __cplusplus extern "C" { #endif /* Before including this file (pkcs11.h) (or pkcs11t.h by * itself), 6 platform-specific macros must be defined. These * macros are described below, and typical definitions for them * are also given. Be advised that these definitions can depend * on both the platform and the compiler used (and possibly also * on whether a Cryptoki library is linked statically or * dynamically). * * In addition to defining these 6 macros, the packing convention * for Cryptoki structures should be set. The Cryptoki * convention on packing is that structures should be 1-byte * aligned. * * If you're using Microsoft Developer Studio 5.0 to produce * Win32 stuff, this might be done by using the following * preprocessor directive before including pkcs11.h or pkcs11t.h: * * #pragma pack(push, cryptoki, 1) * * and using the following preprocessor directive after including * pkcs11.h or pkcs11t.h: * * #pragma pack(pop, cryptoki) * * If you're using an earlier version of Microsoft Developer * Studio to produce Win16 stuff, this might be done by using * the following preprocessor directive before including * pkcs11.h or pkcs11t.h: * * #pragma pack(1) * * In a UNIX environment, you're on your own for this. You might * not need to do (or be able to do!) anything. * * * Now for the macros: * * * 1. CK_PTR: The indirection string for making a pointer to an * object. It can be used like this: * * typedef CK_BYTE CK_PTR CK_BYTE_PTR; * * If you're using Microsoft Developer Studio 5.0 to produce * Win32 stuff, it might be defined by: * * #define CK_PTR * * * If you're using an earlier version of Microsoft Developer * Studio to produce Win16 stuff, it might be defined by: * * #define CK_PTR far * * * In a typical UNIX environment, it might be defined by: * * #define CK_PTR * * * * 2. CK_DEFINE_FUNCTION(returnType, name): A macro which makes * an exportable Cryptoki library function definition out of a * return type and a function name. It should be used in the * following fashion to define the exposed Cryptoki functions in * a Cryptoki library: * * CK_DEFINE_FUNCTION(CK_RV, C_Initialize)( * CK_VOID_PTR pReserved * ) * { * ... * } * * If you're using Microsoft Developer Studio 5.0 to define a * function in a Win32 Cryptoki .dll, it might be defined by: * * #define CK_DEFINE_FUNCTION(returnType, name) \ * returnType __declspec(dllexport) name * * If you're using an earlier version of Microsoft Developer * Studio to define a function in a Win16 Cryptoki .dll, it * might be defined by: * * #define CK_DEFINE_FUNCTION(returnType, name) \ * returnType __export _far _pascal name * * In a UNIX environment, it might be defined by: * * #define CK_DEFINE_FUNCTION(returnType, name) \ * returnType name * * * 3. CK_DECLARE_FUNCTION(returnType, name): A macro which makes * an importable Cryptoki library function declaration out of a * return type and a function name. It should be used in the * following fashion: * * extern CK_DECLARE_FUNCTION(CK_RV, C_Initialize)( * CK_VOID_PTR pReserved * ); * * If you're using Microsoft Developer Studio 5.0 to declare a * function in a Win32 Cryptoki .dll, it might be defined by: * * #define CK_DECLARE_FUNCTION(returnType, name) \ * returnType __declspec(dllimport) name * * If you're using an earlier version of Microsoft Developer * Studio to declare a function in a Win16 Cryptoki .dll, it * might be defined by: * * #define CK_DECLARE_FUNCTION(returnType, name) \ * returnType __export _far _pascal name * * In a UNIX environment, it might be defined by: * * #define CK_DECLARE_FUNCTION(returnType, name) \ * returnType name * * * 4. CK_DECLARE_FUNCTION_POINTER(returnType, name): A macro * which makes a Cryptoki API function pointer declaration or * function pointer type declaration out of a return type and a * function name. It should be used in the following fashion: * * // Define funcPtr to be a pointer to a Cryptoki API function * // taking arguments args and returning CK_RV. * CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtr)(args); * * or * * // Define funcPtrType to be the type of a pointer to a * // Cryptoki API function taking arguments args and returning * // CK_RV, and then define funcPtr to be a variable of type * // funcPtrType. * typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtrType)(args); * funcPtrType funcPtr; * * If you're using Microsoft Developer Studio 5.0 to access * functions in a Win32 Cryptoki .dll, in might be defined by: * * #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \ * returnType __declspec(dllimport) (* name) * * If you're using an earlier version of Microsoft Developer * Studio to access functions in a Win16 Cryptoki .dll, it might * be defined by: * * #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \ * returnType __export _far _pascal (* name) * * In a UNIX environment, it might be defined by: * * #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \ * returnType (* name) * * * 5. CK_CALLBACK_FUNCTION(returnType, name): A macro which makes * a function pointer type for an application callback out of * a return type for the callback and a name for the callback. * It should be used in the following fashion: * * CK_CALLBACK_FUNCTION(CK_RV, myCallback)(args); * * to declare a function pointer, myCallback, to a callback * which takes arguments args and returns a CK_RV. It can also * be used like this: * * typedef CK_CALLBACK_FUNCTION(CK_RV, myCallbackType)(args); * myCallbackType myCallback; * * If you're using Microsoft Developer Studio 5.0 to do Win32 * Cryptoki development, it might be defined by: * * #define CK_CALLBACK_FUNCTION(returnType, name) \ * returnType (* name) * * If you're using an earlier version of Microsoft Developer * Studio to do Win16 development, it might be defined by: * * #define CK_CALLBACK_FUNCTION(returnType, name) \ * returnType _far _pascal (* name) * * In a UNIX environment, it might be defined by: * * #define CK_CALLBACK_FUNCTION(returnType, name) \ * returnType (* name) * * * 6. NULL_PTR: This macro is the value of a NULL pointer. * * In any ANSI/ISO C environment (and in many others as well), * this should best be defined by * * #ifndef NULL_PTR * #define NULL_PTR 0 * #endif */ #ifdef _WIN32 #pragma pack(push, cryptoki, 1) #endif /* All the various Cryptoki types and #define'd values are in the * file pkcs11t.h. */ #include "pkcs11t.h" #define __PASTE(x,y) x##y /* ============================================================== * Define the "extern" form of all the entry points. * ============================================================== */ #define CK_NEED_ARG_LIST 1 #define CK_PKCS11_FUNCTION_INFO(name) \ CK_DECLARE_FUNCTION(CK_RV, name) /* pkcs11f.h has all the information about the Cryptoki * function prototypes. */ #include "pkcs11f.h" #undef CK_NEED_ARG_LIST #undef CK_PKCS11_FUNCTION_INFO /* ============================================================== * Define the typedef form of all the entry points. That is, for * each Cryptoki function C_XXX, define a type CK_C_XXX which is * a pointer to that kind of function. * ============================================================== */ #define CK_NEED_ARG_LIST 1 #define CK_PKCS11_FUNCTION_INFO(name) \ typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, __PASTE(CK_,name)) /* pkcs11f.h has all the information about the Cryptoki * function prototypes. */ #include "pkcs11f.h" #undef CK_NEED_ARG_LIST #undef CK_PKCS11_FUNCTION_INFO /* ============================================================== * Define structed vector of entry points. A CK_FUNCTION_LIST * contains a CK_VERSION indicating a library's Cryptoki version * and then a whole slew of function pointers to the routines in * the library. This type was declared, but not defined, in * pkcs11t.h. * ============================================================== */ #define CK_PKCS11_FUNCTION_INFO(name) \ __PASTE(CK_,name) name; struct CK_FUNCTION_LIST { CK_VERSION version; /* Cryptoki version */ /* Pile all the function pointers into the CK_FUNCTION_LIST. */ /* pkcs11f.h has all the information about the Cryptoki * function prototypes. */ #include "pkcs11f.h" }; #ifdef _WIN32 #pragma pack(pop, cryptoki) #endif #undef CK_PKCS11_FUNCTION_INFO #undef __PASTE #ifdef __cplusplus } #endif #endif