RSA

LABORATORIES

PKCS#11v2.11: Cryptographic Token Interface Standard
RSA Laboratories

Revision 1 % November 2001

Table of Contents

7.

8.

5.1 DESIGN GOALS...cutecereuceereesessesessesesseseseessssesssseastaessssessssessssesessesesssssssssssssssesssssssssssssssessssssnsssssssssnsseasssssnsns
5.2 CENERAL MODEL ...uttiutteuetseaseseseeseasessseessssessesessssessssessssessssasessesssssssssssssssssesssassssssssssssssssssnssssnssssnssssnsssssssns
6.3 LOGICAL VIEW OF A TOKEN....cuttttueerttrerteresseresstsesstsessssessssessssesssssssessssessssessssssssssssssssessssssssssssssssnsssessssssesns
B4 USERS....iuirieeieteist sttt sttt
6.5 APPLICATIONS AND THEIR USE OF CRYPTOKIocuuneereeerensereneereneens
6.5.1 Applications and ProCESSES.......cccumrrmrrereisrnenineseanenissssseesesnens
6.5.2 Applications and thrEadS...........ccvvverriirisiirsrrr s ss e snnnes
B.8 SESSIONS. ...ucueueeeeretreretressesessesessesesesseseeeseeseseeseteeaebeesebses s seaesseReEseEeE e b e e LA e AL A e R b e Rt b e bbb e b e bt nee s
6.6.1 Read-only session states
6.6.2 REAU/WIITE SESSION SLALES.......ccurerieueererereitee ettt bbbt bbb es st
6.6.3 Permitted object aCCESSES DY SESSIONS.......ciiieeiriiereririiere st ss s e seenes
B.6.4 SESSION BVENES.....cuiuerereutietetreseasis e sesss et bbb se e b s s bbb E s £ e R b b s b b s s bbb bt
6.6.5 Session handles and 0bjeCt NANAIES..........cccvveerrcciirs e
6.6.6 Capabilities of sessions
6.6.7 EXAMPIE Of USE Of SESSIONS.....c.cvieeiiiieririsiriressisi sttt sttt se s ss s s s s ssssssnnanes
6.7 SECONDARY AUTHENTICATION (DEPRECATED)ituruiurereereeeressesessesessssessssssssssssssssssssssssensssssssssssens
6.7.1 Using keys protected by secondary authentication............cccoeeveeeenennnnn.
6.7.2 Generating private keys protected by secondary authentication
6.7.3 Changing the secondary authentication PIN value...........cccceoecereenrcnnnen.
6.7.4 Secondary authentication PIN collection mechaniSms...........ccccvvvvvesnvsessnnesesssessssseseeens
6.8 FUNCTION OVERVIEW ...oucuitiueereueereuretesesesessesesstsesssseasssessssessssesssssssesssssssssesssssssssssssssassssssnsssssssssnsssssssssssns

SECURITY CONSIDERATIONS ...t 31

PLATFORM- AND COMPILER-DEPENDENT DIRECTIVESFOR C OR CH+.....cccociiiiiiicciines 32

8.1 STRUCTURE PACKING.....ccttutettutueestseestseeestase ettt s e b e b e ne b se s 32

Copyright O 1994-2001 RSA Security Inc. License to copy this document is granted provided that it is
identified as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

PKCS#1v2.11r1% 001- 903053- 211- 001- 000

ii PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

NULL_PTR ..ottt sttt st ses e e s s sttt s sttt en st enns

83 SAMPLE PLATFORM - AND COMPILER-DEPENDENT CODE
B.3.1 WWINS2Z ..ttt bbb bbb bR bbbt b b s s b et bt nee
8.3.2 WINLG ...ttt bbb bbb bbb b b s b et bt s e
8.3.3 GENENIC UNIXu.ooieeee sttt sttt s s s se s s s e s s s e s s s nnnnes

9. GENERAL DATA TYPES ..o s 37

0.1 GENERAL INFORMATION ..utitictistestestestessesssssessessssassassassessessessessesssssssssessesssssssssessessssssssssssssassessessessessessesns
(0 QY == [0 N Y == [0 NI =21 =
CK_INFO; CK_INFO_PTR..ooocccccersesecceeesssssceeeesessseesssssseeeesssse
CK_NOTIFICATION .oosseeeeeeeeeeessseeeeessseseeeesesseeesssssseeeeessse

0.2 SLOT AND TOKEN TYPES.....oioicteseresec s ssssssssessestesaesaessessssseens
CK_SLOT_ID; CK_SLOT ID_PTRucoeeoeeooosecceeesssscceeeesssseeeesssssseessssssssesssssseseesssssseseeessseseeesens
CK_SLOT_INFO; CK_SLOT_INFO_PTR.....coooooooseceeeeessssceesssssseeeesssssceesssssseseesssssseseeessseseeesen
CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

0.3 SESSION TYPES...cuicietietistiseiiesssessestestesssssssssssesstssssssassassassassessessessessssssessessesssssssssestessssssssssassassessessessessessesns
CK_SESSION_HANDLE; CK_SESSION_HANDLE._PTR ..ooosticceeeeessecceeeessssceeeesssseeeeessssseeesens
(o1 QLU= = =3 1= =S
(0111 1 =
CK_SESSION_INFO; CK_SESSION_INFO_PTR

L I R @ = =l o i 1 =) =TSSR

" CK_OBJECT _HANDLE; CK_OBJECT HANDLE PTR...ooosocccossssoceeessssseeesssssceessssssceeeessssie
CK_OBJECT _CLASS, CK_OBJECT _CLASS PTR
CK_HW._FEATURE_TYPE ..ooooccceesoeeceeeseseseeessesseeesessseeeeesssse
[(2 2 =
[= 23 1= 7N 1 = 2 =T
[N = 1= T = 1= =
CK_ATTRIBUTE; CK_ATTRIBUTE_PTR.....coooroosrccerrsssscrerssse
[0 YN 1 =H

95 DATA TYPES FOR MECHANISMS....ccoisiveiieierierieesessessessesseseessessessssseens
CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR
CK_MECHANISM; CK_MECHANISM_PTR...ooosseeeeeesseceeessssseeeeessssssesssssseeeesssssseseeessssseeesens
CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR

0.6 FUNCTION TYPES. ..o ctictiiiiiiiiitestestestessessssss st st st sstsssassasbasbasbesbessessssssestessessssssassasessessssssssssnsansastessessessessesns

(] G 2 &
CK_FUNCTION_LIST; CK_FUNCTION_LIST PTR; CK_FUNCTION_LIST PTR PTR.......68
0.7 LOCKING-RELATED TYPES....iioisisestisttsstsstssesstessssssssassastessessessessssssssssssessesssssssssassssssssssssssssassestessessessessesns
[= Y 1= U1 =
CK_DESTROYMUTEXccoooeseeeeeessseeeeesssseceeeesesseeeessssseeeeesssse
CK_LOCKMUTEX and CK_UNLOCKMUTEXovvssccccrrree
CK_C_INITIALIZE_ARGS, CK_C_INITIALIZE_ARGS PTR

LO. OBUIECTS...o s bbb bbb b b bbb

101 CREATING, MODIFYING, AND COPY ING OBJECTS...c.curuuriereeneenernereesesssssssssssssssssssssessessessesssssssssssssns
10.1.1 Creating ObJECES......occueuvecreerrireseeeseseses s ssesesssssessennens
10.1.2 Modifying objects

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

11.

0 50 T T @0 o)/ 1 0o o] o= xR
102 COMMON ATTRIBUTES .o.cuiiteiretsetsetsetseesessesessssssssssssssssssssessssassessessessessssssssssssssssastessessessessessessssssssssns
103 HARDWARE FEATURE OBJECTS

0 00 R @1 o Tt S o o £ TP

10.3.2 MONOtONIiC COUNLEN ODJECES......ccoeurrreeeeerericistsiressssseesessssssssesssssesesessssssssssssessssssssssessssssssessssssssesses
104 STORAGE OBJECT S .ctutttuereseeeeseesessessesssssessesesssssssssssssssssssssssssssssssessesssssesssssssssssssastassessessessesessssssssnsns
105 DATA OBJIECT S e tteiirireeeesessetsetsstssessssssessessessssss sttt essessessesssss s s ssbstsssassessassesssssessssssssnsssnens
106 CERTIFICATE OBJECTS

10.6.1 X.509 attribute CertifiCate ODJECLSccvvireciriercrcereree et
107 KEY OBUJIECT Sctttetreeriseeeesessetsstsetssesesssssssessess sttt sttt st ettt
108 PUBLIC KEY OBJIECTS.....coieieeeenesnensnsssessssssssssssssssessssssssssssssssens

10.8.1 RSApublickey ODJECtS.......cccvvircrerercr s

10.8.2 DSApublic key ODJECES......cccuvvercrrecc s

10.8.3 ECDSA PUDIIC KEY ODJECLS.......coeeceeeieecrirecicts sttt ss ettt easesssnsnsses

10.8.4 Diffie-Hellman public KEY ODJECLS.......cvviiecirresirriseses st ssnsseaes

10.8.5 X9.42 Diffie-Hellman public key objects

10.8.6 KEA public Key ODJECLS.......cvvireeererereeresesee s esesesssssesenens
109 PRIVATE KEY OBJECTS....crieieeurernenesnsesesesssssssssssssessssssssssssssssssens

10.9.1 RSAPFVALE KEY ODJECEScvcviiececeeereeee sttt s st ssesss st ss s s s ssssessssssnssses

10.9.2 DSAPrivate KEY ODJECES.....ccuvirereeireesterisesis st ses et sssssessess st ssssssssesessssnsesssssssseses

10.9.3 Elliptic curve private key objects

10.9.4 DiffieeHellman private K&y ODJECES.......cvvviciricceree s seanseens

10.9.5 X9.42 Diffie-Hellman private Key ODJECLS........ccvvuerereerriscsie s ssessasseens

10.9.6 KEA Private KEY OBJECES.......cvivircireccc sttt s st n s nanaeens
1010 SECRET KEY OBJECT S uuriueuueereesiesseseesessessesssssssessssssssssssssssssssssssssssesssassssssssssssssssssssssssssssssssssssssassassns

10.10.1 Generic secret key objects.

10.10.2 O <ot = (Y o] o] =T £ R

10.10.3 RC4 SECT €t KEY ODJECES.....cucvcvieeeceetrecsieiressssie s sesesse sttt ss st esssnsssnsssses

10.104 RCS5 secret Key ObJECES.......ccvivireeereeeeresssie s

10.10.5 AESsecret Key ODJECtS......cvvvecrereccr s

10.10.6 DESsecret key OhJECES.......ccvevvreereerrrecsee s

10.10.7 DES2 SECTet KEY ODJECES.....cvcuieieceetrecsesees sttt anse s snses

10.10.8 DES3 SECT et KEY ODJECES.....cvcvieeereeiriccesees et se sttt nse s snnes

10.10.9 CAST secret Key ODJECES........vcreveveeerreeesiesessseeesesssssssennens

10.10.10 CAST3 secret Key ObJECtS....covvvveccrveseee s

10.10.11 CAST128 (CAST5) secret key objects

10.10.12 |IDEA SECIEt KEY ODJECLS.......cvecerecereeiresicists sttt sssss st s s st sssssessnsnnssns

10.10.13 CDMF SECIet KEY ODJECES.....cceereereeirisicisisisessstsssesss st ssssssssesssssessssssssesesssssssssssssseses

10.10.14 SKIPJACK secret key objects

10.10.15 BATON SECret KEY ODJECLSc.cvuereeiriicieisressstseses et s st sssssssssssnnsesns

10.10.16 JUNIPER SECIet KEY ODJECES......cceeeeiriricieirirercsiresese st sessssssssesssss s ssssse s sssssssssssssnsns
1011 DOMAIN PARAMETER OBJECTS...c.uuieieeeneeesssssssessesssssssssssssssssesssens

10.11.1 DSA domain parameter ODJECES........coveuvricieirrirerees et eses

10.11.2 Diffie-Hellman domain parameter objects

10.11.3 X9.42 Diffie-Hellman domain parameters objects

FUNCTIONS ...ttt s bbb bbb bbb

111 FUNCTION RETURN VALUES.......oovumuinesersereesessesnessssssssssssssssssens
11.1.1 Universal Cryptoki function return values
11.1.2 Cryptoki function return values for functions that use a session handle
11.1.3 Cryptoki function return values for functionsthat use a token.........c.c.cocoeevevrececcrerecneenne
11.1.4 Special return value for application-supplied callbacks
11.1.5 Special return values for mutex-handling functions..............

11.1.6 All other Cryptoki fuNCtion FELUrN VAIUES..........ccceureeeerrrercesissesesseessessssssesesssessessssssssesssssesns

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

v PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

11.1.7 Moreonrelative priorities of CryptoKi €ITOrS.......oovevvercrnrereseserssssesssseesesssssessssssseens 138
0 T = o oo [l o (=T PR 138
112 CONVENTIONS FOR FUNCT IONS RETURNING OUTPUT IN A VARIABLE-LENGTH BUFFER........ 139
113 DISCLAIMER CONCERNING SAMPLE CODEvuitieieiensensseeseesssssssssssssssssssssssessessesssssssssssssssssssessns 140
114 GENERAL-PURPOSE FUNCTIONS.....cttuttteeseseeseessessssesssssssssssssessssssssssssssssssssssssssssessessessssssssssssssssssnes 140
" L 1 0T =TT

L 10T U= OO

(O €1 {17 {o J—

C_GetFunctionList

115 SLOT AND TOKEN MANAGEMENT FUNCTIONS.

" O €1 1S o 4 N O

C_Getdotlnfo............

O C 1= 0 o210 1) o 1T

C_WaitForSotEvent

O © 1= 1Y 1=Tor = T 0] I TP
C_GetMechani SMINFOccccvvereerreee s

C_InitToken

C_InitPIN...covrerene

116

117
" C_CreateObject
C_CopyObject............
(O 1= 1)Y@ o ="t TR
O C 1= (0] o] =Tex £ T TR
C_GEtAUITDULEVAIUE.......cececeeeeereee s
C_SetAUITDULEVAIUE ...
C_FindObjectsinit
L 1107] o= £ TP
O 1 0o (@] o= ox I - TP
118 ENCRYPTION FUNCTIONS
" L =0 To7 1Y/)4 I o RPN
(O =12 ot Y/ | TP
L =g To7 Y/ 0110 oo =1 - OO
L =g To3 Y/ o)1 1 - OO
119 DECRYPTION FUNCTIONS

11.10

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

111
1112
1113
" C_DigestENCryptUpdate.........coceerereeeenrerssieneresseeesesessessesesssesens
C_DecryptDigestUpdate.........ooverrereeeerenssieneressesesesesssessesesssesens
C_SIgNENCryptUpdate.........cccveeveerereeessesssieseseseeesssessessesessesens
C_DeCrYPtVENITYUPIALE.cvevereeereesieirsesisie sttt sesssssese st ss st ssssssssesssssansessnen
1114 KEY MANAGEMENT FUNCTIONSctttutettrestereusertssesteesssesssssssssesssssss s ssessssessessessssssssssssssssssesssesaees
" C_GenerateKey
C_GENEIALEKEYPAIT ...ttt se sttt s et s et es s sns s nsnansessnen
O =T o (=Y T
O 8 111 =T o1 Q= T
O 1= L= 2SR
1115 RANDOM NUMBER GENERATION FUNCTIONS
" LS| =TT [0 o o TR
O €T g T= 1= = T o] o TR
1116 PARALLEL FUNCTION MANAGEMENT FUNCTIONS
" C_GEtFUNCLIONSALUS......ceveerrereceeerereesseeresss e sesssesssessessesesssesens
C_CanCEIFUNCLION ...t
1117 CALLBACK FUNCTIONSctiuetriuetseueesessesessessesessesessessssssssessssssssssesssssasssssssssssssssssssessssssssssnsssssssssssesaees
11.17.1 SUFreNder CAIIDACKS........c.ocree e
11.17.2 Vendor-defined CAlIDACKS..........ccrieriiireireree et
12, MECHANISMS.....ce ettt bbbttt
121 RSA MECHANISMS.....cotieirtieesteeesseseassseas s st sesss s st s s s sess e ea b eea b sese b st s s s s se st b st bansenas
12.1.1 PKCS#1 RSAKEY PaIT GENEIatiON......cvoveereereereceeieereesetsesessestsssessssssssessssssssssssssssssssssesssssssseses
12.1.2 X9.31 RSAKey pair generation........ccccovveeeeerrenesesesesssessenennens
12.1.3 PKCSHL RSA.....cortrieiree sttt s st bbb bbbt
12.1.4 PKCS#1 RSA OAEP mechani Sm parameterS.......cocrvecernnesssessnesssssssesssssessessssssssssssesns
CK_RSA PKCS MGF_TYPE; CK_RSA PKCS MGF_TYPE_PTR
CK_RSA_PKCS OAEP_SOURCE_TYPE; CK_RSA_PKCS OAEP_SOURCE_TYPE_PTR 237
CK_RSA PKCS OAEP_PARAMS, CK_RSA PKCS OAEP_PARAMS PTR.....cccovniireniunen. 238
12.1.5 PKCSHL RSA OAEP.......oo ittt ettt bbbt
12.1.6 PKCS#1 RSA PSSMEChani SM ParamELErS.........ccoeeerrerresienesssssessessssssssesssssesssssssssssssssssesns
CK_RSA PKCS PSS PARAMS; CK_RSA_PKCS PSS PARAMS PTR
12.1.7 PKCSHLRSAPSS.......oortreree et
12.1.8 1SOMEC 9796 RSA ...ttt
12.1.9 X509 (FAW) RSA ...ttt sttt e s sttt ea s s s snnnanseses
12,210 ANSI XO.3L RSA ...ttt e s sttt

12.1.11 PKCS#1 RSA signature with MD2, MD5, SHA-1, RIPE-MD 128 or RIPE-MD 160.... 244

12.1.12 PKCS#1 RSA PSSsignature with SHA-1

12.1.13 ANSl X9.31 RSA Signatur@ With SHA-L ...ttt ssssessssnsseens

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

vi PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

122 DSA MECHANISMScuireieeeesetsetseesessesssssssessesssssssssssss st sssessessessesssssesssssssssssssssssssessessessessssssssssssassassns
1221 DSAKEY PAIT GENEIALIONcuiuiireeereisieirisesis s ressasssssesss s sssste e sssssessesssssessssssssesessssssesssssssseses
12.2.2 DSA domain parameter generation
12.2.3 DSAWIthOUL NASHINGcccecieicrcscre st st nanseee
1224 DSAWITN SHA L ...ttt s st
1225 FORTEZZA LIMESLAMP .ouvvuiereeeeeeeissiseesessesessessesssssssessssssssssssssssssssssssssssesssssssssssssssssssessesssssessesas

123 ABOUT ELLIPTIC CURVE ...cttiiniiniinireereese sttt st ssssssssess ettt st sssssssssessssssssssssassassessssesens

124 ELLIPTIC CURVE MECHANISMS
12.4.1 Elliptic curve Key pair gENEIratiONcovceueurercrenerersesisessssissessssssssessssssssssssssesssssssesssssssseses
12.4.2 ECDSA WithOUt NASNING......cciireirirersecss st sssss s et se s sssssessesansesns
12.4.3 ECDSAWIth SHA L.

12.4.4 EC mechaniSm parameters.........cocovernsesenesssssesesssesssnennens

12.4.5 Elliptic curve Diffie-Hellman key derivation............cccvvevcvevneccsnesecnenns

12.4.6 Elliptic curve Diffie-Hellman with cofactor key derivation
12.4.7 Elliptic curve Menezes-Qu-Vanstone Key derivation..........ccccvveenereenneneseenesssssesseseseenns

125 DIFFIE-HELLMAN MECHANISMS.....ouiuieieriereereenennessessssssssssesssssens
125.1 PKCS#3 Diffie-Hellman key pair generation..........cccccovveneeee
12.5.2 PKCS#3 Diffie-Hellman domain parameter generation
12.5.3 PKCS#3 Diffie-Hellman Key derivation...........ccccceeeenveniesieisensssssessssssesssssessssssssssssssssesns

126 X9.42 DIFFIE-HELLMAN MECHANISM PARAMETERS.ccvuririiisesississesesnesssssesssssssssssssssssssssens

CK_X9_42 DH1_DERIVE_PARAMS, CK_X9 42 DH1 DERIVE_PARAMS PTR.............. 260
CK_X9_42 DH2_DERIVE_PARAMS, CK_X9 42 DH2 DERIVE_PARAMS PTR............. 261

127 X9.42 DIFFIE-HELLMAN MECHANISMS.....ccuiiuirrineseesessesessssssssssessesens
12.7.1 X9.42 Diffie-Hellman key pair generation.........ccccceevvenresienessseessesssssssesssssesssssssessssssssesns
12.7.2 X9.42 Diffie-Hellman domain parameter generation
12.7.3 X9.42 Diffie-Hellman key derivation...........ccccvveevrereernnennnns
12.7.4 X9.42 Diffie-Hellman hybrid key derivation...........ccccccvvveennnesnsesesesesesee s sseseseenns
12.7.5 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivationcevvenneeseneneenenns

128 KEA MECHANISM PARAMETERS.....ccuruiueieieessesnessssessssssssssssssssssssssssssssssssssssens

CK_KEA_DERIVE_PARAMS, CK_KEA DERIVE_PARAMS PTR

129 KEA MECHANISMS....coiiieieieeeeeessesesssssssssssssesssssssssssssesssssssssssssssssssssssssssssesssssns
12.9.1 KEAKEY PAIT JENEIALION.....coiiiireeericseeirisisestsisessssssssesssssssesssssesssssssssssssssssessssssssessssssssesssssssseses
12.9.2 KEAKEY UEMIVALIONveierietrireseeirecsieise et ssessssssasssssssssse st sssssssssssssssssessssssssessssssssessssssseses

1210 GENERIC SECRET KEY MECHANISMS......cviumienienernernesesessesssssssssenns
12.10.1 Generic secret Key generationcoceveneseeseseessenennens

1211 WRAPPING/UNWRAPPING PRIVATE KEYS...ccvuvirereeereeseeseeseennenns

1202 ABOUT RC2...iiiiiciiieie et ssesess s s s st s st

1213 RC2MECHANISM PARAMETERS.....cvttieetererasssssessesssens
) CK_RC2_PARAMS; CK_RC2 PARAMS PTR.....ccovumrrrrrreneen.

CK_RC2_CBC_PARAMS; CK_RC2_CBC_PARAMS PTR
CK_RC2_MAC_GENERAL_PARAMS, CK_RC2_MAC_GENERAL_PARAMS PTR.......... 274

1204 RC2ZMECHANISMS....cciurieieeeseesseseessesessessessessssssssssssssssssssssssssssssssssssesssasssssssssssssssssssssssssssssssssssssssassassns 275
12.14.1 RC2 key generation
12.14.2 RC2-ECB.....rrcrccrescsie s
12.14.3 RC2-CBC..ooirirereriereiretsetsessess st ssssss s s s s s sssssssssnsns
12.14.4 RC2-CBC With PKCS PAUAING ...cvvveeeeeereiecieiriresieisesesieesesessesssesssssssssssssssssssssssssssssssssssssssnes
12.14.5 General-length RC2-MAC ...t
12.146 RC2-MAC

1215 RCAMECHANISMS,
12.15.1 RC4 key generation

12.15.2 RO
1216 ABOUT RCE ...
12.17 RC5 MECHANISM PARAMETERS......cceurutererrerenseessesessessesesssessenesans

CK_RC5_PARAMS, CK_RC5_PARAMS PTR

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

Vii

CK_RC5_CBC_PARAMS; CK_RC5_CBC_PARAMS PTR.....ccccosnmiririneineinsinsenesneseseseeseens 281
CK_RC5_MAC_GENERAL_PARAMS, CK_RC5_MAC_GENERAL_PARAMS PTR.......... 281

1218 RCSMECHANISMS....cciuiereeeereeseessassessssessessessssesssssssssssssssssssssssssssssssessssassassns 282
12.18.1 R OIS VAo 1= == 4o o T 282
12.18.2 RCB-ECB..... ettt sss s s s et 282
12.18.3 RCB-CBC...cirirerririereireiseisessess s sssssss s s st ssnsns 283
12.18.4 RC5-CBC With PKCS PAAAINGvvveeeeeereierieiriresieisesesaeesesessesssssessssssesssssssssssssssssssssssssssssnes 284

12.18.5 General-length RC5-MAC
12.186 RC5-MAC
1219 AESMECHANISMS
12.19.1 AESkey generation
12.19.2 AESECB
12.19.3 AESCBC
12.19.4 AES-CBC With PKCS PAUUiNG....ccveuririrreririrersiresessetsesessssssssesssssessessssssssssssssessssssssessssssssesns
12.19.5 General-1ength AESMAC ...ttt s s ssanseses
12.19.6 AESMAC ..ottt
1220 GENERAL BLOCK CIPHER MECHANISM PARAMETERS
CK_MAC_GENERAL_PARAMS, CK_MAC_GENERAL_PARAMS PTR

1221 GENERAL BLOCK CIPHER MECHANISMS.....cocriieerieeeseesesssssssssssnsssesens
12.21.1 General block cipher key generation
12.21.2 General block cipher ECB........cooovoevvenrcnrersseesereesnenees
12.21.3 General bloCK CIPNEr CBC ...ttt sssssssssssssse s sssssssssssssssssssssssesas
12.21.4 General block cipher CBC with PKCSPadding........ccccveuvenreeereresesresisseenessssessessseeens
12.21.5 General-length general block Cipher MAC.........ccrvcenrscsesese s
12.21.6 General bloCK CIPNEr IMAC......... ettt sssss st ss s sssssssansesas
1222 DOUBLE AND TRIPLE-LENGTH DESMECHANISMS
12.22.1 Double-length DESKEY gENEratiON.........cccccvuvereerereseenesesissesesssssessssssssesssssssssssssssssssssnes
12.22.2 Triple-length DES Order of Operations........cccoveenvencesinnenssessnesssssssessssssssessssesssssssesns
12.22.3 Triple-length DESin CBC MOde........ccceovvuveveeeenerereeeenireneens
1223 SKIPJACK MECHANISM PARAMETERS....cvueuuerersesessesssssssssssss s sssens
CK_SKIPJACK_PRIVATE_WRAP_PARAMS,
CK_SKIPJACK_PRIVATE_WRAP_PARAMS PTR.....coniieinininsinsineineineses st sssssssssssssessessesns 298
CK_SKIPJACK_RELAYX_PARAMS; CK_SKIPJACK_RELAYX_PARAMS PTR......cccceuuuu.n. 299
1224 SKIPJACK MECHANISMS....oouuiurieiereeiereesessessssesssssssssessssssssssssssssssesssesens
12.24.1 SKIPJACK Key generationoccvveeeeeerresssesesessssssssennens
12.24.2 SKIPJACK-ECBBA ..o

12.24.3 SKIPJACK-CBCBA ...t
12244 SKIPJACK-OFBBAcoviciiciisiisie et s
12.24.5 KIPJACK-CFB64
12.24.6 SKIPJACK-CFB32
12.24.7 KIPJACK-CFB16

12.24.8 SKIPJACK-CFBB.......ccocreerierereineieisisseseessssessssssss s ssssssssssssssssssssssssss s s s sssssssessesssssessesas
12.24.9 SKIPJACK-WRAP ...t ississesessessessssssss s s s sessssssssnsns
12.24.10 SKIPJACK-PRIVATE-WRAP
12.24.11 SKIPJACK-RELAYX.....ciiurierereumsireesessesesssssesssssssessssnssessesssssessesas
1225 BATON MECHANISMS...ooiuiiurirririeeeeeseesessesssssssesssssssssessssssssssssssssssessassessns
12.25.1 BATON Key geNeration..........ccoceevereeerrereeneessesssesssessssesnens
12.252 BATON-ECBI28........cocovrrerieieirsinsiseenesnessessss s ssssssssssssens
12.25.3 BATON-ECBOB........ccsuriurerrernieisieinsessiseesessessesssssssssssssssssssens
12.25.4 BATON-CBCL28........ccoureureererrinrireesesseseessssesssssssssss s ssessesssssessssas
12255 BATON-COUNTER.......ccourierereirsirresesseneessssessessesesss s sssessesssssessesas
12.25.6 BATON-SHUFFLE......cccsosmiinernineireereneseseseese s
12257 BATONWRAP......coorrrnsie et
1226 JUNIPER MECHANISMS.....oouuiiuririeieseeseesessessssessessssssssssssssssssssssssssssesssassessns

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

Vil

PKCS #11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD
12.26.1 JUNIPERKEY QENEIatioN......cccvueereeereririsieiressesisssesssssssesssssessesssssssssssssssssssssssessssssssesssssssseses
12.26.2 JUNIPER-ECBIL28..........ccvurieririinsissiseeseiseesessess st ssssssssssssss s st ssssssssssssssssessssas
12.26.3 JUNIPER-CBCI128.........cccovrmrrrireerrineerieresnesnesssessssssissssssssens
12.26.4 JUNIPER-COUNTER......ccsisuririesissereessssessssssssssssss s ssessesssssesassns
12.26.5 JUNIPER-SHUFFLEcoiiirrrrrriresetseisesess sttt s sssns
12.26.6 JUNIPERWRAP ..ottt tsstsseseesssssssssssss s st sssns
1227 MD2 MECHANISMS....cuiuireereessessessesssseesessesssssssessssssssssssssssssssssssssssessssassssssssssssssssssssssssssssssssssssssassessns
12271 MD2
12.27.2 General-1ength MD2-HMAC ...t ssssssssss st sssssssssssssssssssssseses
12.27.3 MD2-HMAC...... ittt ssssss s st s
12.27.4 MD2 Key derivationcccovveeveneesnensseesesssesesesssssesnens
1228 MDS5 MECHANISMS.....coiurierienieneseeseeessessssessssssssssesssssssssssssssssssssssssns
S T Y | L O
12.28.2 General-1ength MD5-HMAC ...t sssss s s ssssssssssssssssesns
12.28.3 MDS-HMAC...... ittt sss s s bt
12.28.4 MD5 Key derivationccccovveereneeenesssie s
1229 SHA-1MECHANISMS
12291 SHA L.ttt
12.29.2 General-length SHA-1-HMAC
12.29.3 SHAL-HMAC ...ttt s st
12.29.4 SHA-1 key derivation
1230 FASTHASH MECHANISMS.....uoiiiiiieieiesesnessessssssssssessssesssssssssssssesssessns
12.30.1 FASTHASH. ..ottt s st
1231 PASSWORD-BASED ENCRYPTION/AUTHENTICATION MECHANISM PARAMETERS.......ccocvuenn. 316
CK_PBE_PARAMS; CK_PBE_PARAMS PTR.....ccotinirininiinininessns st ssssssssssssssssssssns 316
1232 PKCS#5AND PKCS#5-STYLE PASSWORD-BASED ENCRY PTION MECHANISMS.......cconvenienienen. 317
12.32.1 MD2-PBE fOr DES-CBCccoviirinrirrireiriereenessessiss s sssesssssssssssssssssss s ssssssssssssssssssssessssns
12.32.2 MD5-PBE fOr DES-CBCccoeoiirinierierieriesiesessesssssis s sssssssssssssssssssssss s sssssssssssssssssssssssessssns
12.32.3 MD5-PBE for CAST-CBC......cccoecntminieriereenesneseneessississesseneens
12.32.4 MD5-PBE for CAST3-CBC.......cccoeoniniinierienerneeesensissessesseneens
12.32.5 MD5-PBE for CAST128-CBC (CAST5-CBC)....ccveveereennen.
12.32.6 SHA-1-PBE for CAST128-CBC (CAST5-CBC)
12.32.7 PKCS#5 PBKDF2 key generation mechanism parameters.........coocevveeenenenssesnesennes 319
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE;
CK_PKCS5_PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE_PTR.....cccoenerrneireireineineineneeeeneens 319
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE;
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE_PTR.....costinintininiininiseeenssss st sssssesssssssessesesns 319
CK_PKCS5_PBKD2_PARAMS, CK_PKCS5_PBKD2_PARAMS PTR.....cccouomiminineeeeeneens 320
12.32.8 PKCS#5 PBKD2 KEY QENEI AtION.......cucvveieceetrerisieiresesietsesesessssesssssasssssssssssssssssssssssssssssnes 321
1233 PKCS#12 PASSWORD-BASED ENCRY PTION/AUTHENTICATION MECHANISMS.....ccoenrenieneeneen. 321
12.33.1 SHA-1-PBEfOr 128-Dit RCAcooiririerieriirinieie s sssssssssssssesns
12.33.2 SHA-1-PBEfOr 40-Dit RCA.......oieierrirereereenesee st sesssssess s s sssssssesssns
12.33.3 SHA-1-PBE for 3-key triple-DES-CBC
12.33.4 SHA-1-PBE for 2-key triple-DES-CBC
12.335 SHA-1-PBE for 128-hit RC2-CBCccouovirirnerreieisississiseesessessesssse s sssssssssssssssssssesns
12.33.6 SHA-1-PBE fOr 40-hit RC2-CBC......cccsuviureerirnirnirsisisissississessssessesssse s sssssssssssssssssssssssssesns
12.33.7 SHA-1-PBAfor SHA-1-HMAC ..o
1234 SET MECHANISM PARAMETERS.....cviuiueteeneresnsessesessssesssnsssssssssssssssesens

12.35.1 OAEP key Wrapping fOr SETc.ooiccereieerisesisisesssssssessssesssssssssssssssssesssssssssssssssssssssssssesns
1236 LYNKSMECHANISMS....coovuriirirrereeeereessesesssssssssssssessessssssssssssssssssssssns

12.36.1 LYNKSKEY WFappinNg......cccceeveremerrersseserersssesssessssssssesssssesnens
1237 SSL MECHANISM PARAMETERS.....cvtuiueunienerenssssessesssssssssssssssssessesens

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

CK_SSL.3 RANDOM_DATA ...ttt 327
CK_SSL.3_MASTER KEY_DERIVE_PARAMS,

CK_SSL3 MASTER _KEY_DERIVE_PARAMS PTR.....coininininininises st sseens 328
CK_SS.3 KEY_MAT_OUT; CK_SS.3 KEY_MAT_OUT _PTRu..cccoenrrrirrireireineineenesneseesesneens 328
CK_SSL3_KEY_MAT_PARAMS; CK_SSL.3 KEY_MAT_PARAMS PTR.....ccovuimimenerrereinenns 329

1238 SOL MECHANISMS....cuieiereeeerressissessesessessessesssssssssssssssssssssssssssssssssnssessssassssssssssssssssssssssssssssssssssssssansessns

12.38.1 Pre_master KE&Y geNEratioN.........ccvveeerericieirreseseses s sssesssssessssse s ssssssssessssssnes

12.38.2 Master key derivation...........ccoveveveeeveneseeneseseeesessssesnens

12.38.3 Master key derivation for Diffie-Hellman

12.38.4 Key and MAC DI VALIONccccrreeeriresie st eesss sttt ssssssssssssses

12.38.5 MD5 MACING iN SSL 3.0 ...

12.38.6 SHA-L1MACING iN SSL 3.0 ..o

1239 TLSMECHANISMS....covitrierierieneinereesesssssesssssssssssssssessessssssssssssssssssssssns

12.39.1 Pre_master KEY gENEration.........ccveerricierrise s ssssssssssnsssses

12.39.2 MaStEr KEY TN TVALION........ccvveeceetrecce ettt s e snaes

12.39.3 Master key derivation for Diffie-Hellman

12.394 Key and MAC derivationcoceeeeeveneneenenssesssesssssesnens

1240 PARAMETERS FOR MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS......cccoenienienieneen. 339

CK_KEY_DERIVATION_STRING_DATA; CK_KEY_DERIVATION_STRING_DATA PTR.339
CK_EXTRACT_PARAMS, CK_EXTRACT_PARAMS PTR
1241 MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS
12.41.1 Concatenation of a base key and another Keycocvevveoeenerecseinscsessesesseseseneenns
12.41.2 Concatenation of a base key and data............cccvveeeverrrienseseserese s
12.41.3 Concatenation of data and @ base KeY..........ccceveervriseeinsesesesese s sessssesssssssseens
12414 XORING Of @Ky aNd dat@.......ccoeevueiriririniririnssieesessesssessssessessssssssesssssssssssssessssssssssssssssseses
12.41.5 Extraction of one key from another key
1242 RIPEMD 128 MECHANISMS......viiiierieiereesiesessssssssesessens
12421 RIPE-MD 128......oiiceeiniecie e ssissesessessessssssss s st s sssnsssssnsns
12.42.2 General-length RIPE-MD 128-HMAC..........ccccooevreierrrennnne
12.42.3 RIPE-MD 128-HMAC.......cocovrrrrirrireirierenenesieiss s issssseseens
1243 RIPEMD 160 MECHANISMS.....eniiiireereereeseeseesesseseessesssessssssssssssenns
12431 RIPE-MD 160c.iiierierieriereencreisiseessessesesssssesssssssesss s ssessesssssessssas
12.43.2 General-length RIPE-MD 160-HMACccoummirerirrsieseresesssesssse s ssssssssssssssssesns
12.43.3 RIPE-MD 160-HMAC........oierierrinsireisstseesessess s sssssssssssssssssss s st ssssessssssssessssas

13. CRYPTOKI TIPSAND REMINDERS........cccooinrinnn s snes 348

131 OPERATIONS, SESSIONS AND THREADS......cuctturetuerreressersssesesseessesessssssesssssessssesssssessessssssssesssesessensans 348
132 MULTIPLE APPLICATION ACCESS BEHAVIOR......ciirieritieresssesi s sesesssssenenes 349
133 OBJECTS ATTRIBUTES, AND TEMPLATES
134 SIGNING WITH RECOVERY ...cvvueueurreeassessesessssssssessessssessssssssesesssesssssssssssssssssessssesssssesssnssssesssssessssenesns

A, TOKENPROFILES ... bbb s 351

B. COMPARISON OF CRYPTOKI AND OTHER APIS........ccooseee s 353
C. INTELLECTUAL PROPERTY CONSIDERATIONS........cccoiinriisnssssssisss s 357

D. METHOD FOR EXPOSING MULTIPLE-PINSON A TOKEN THROUGH CRYPTOKI 358

D.1 VIRTUAL SLOTSAND TOKENS....ccirituetrereesesresessserssseessssesesssessssesssssesssssssssssesssssessesssssesssssssssssessassessens 358
D.2 OBJIECT VISIBILITY tttutuctreeueueeresesseessesesssessesesssessesesssssessessssssssessssssssesssssesssssssssssssssssessssssssessssssssssensassessens 358

E. REVISON HISTORY ..o bbb e 360
E1l REVISION 1, NOVEMBER 200L.......cccoiiriririririnisisesesisisesesssssssesssssssesssssssssssssssesssssssessssssssssssssssssssssssssssssnses 360

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

X PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

List of Figures

FIGURE 1, GENERAL CRYPTOKI IMODELevevteeeeeeteeeeteeeeeeeeseeeeeeneeesseeseseseessseenssessesssenssesens 13
FIGURE 2, OBIECT HIERARCHY ...t teeeeeeeeeeeeeeee et eeeeteeeeeeeeeeeeseaeeeseeeeneeeenseseneeeeeeseeneeseenens 14
FIGURE 3, READ-ONLY SESSION STATES ...vtvtteteeteseeteeeseeesseesessseessseesssesesssseesssessssssessseessns 19
FIGURE 4, READ/MRITE SESSION STATESvtvteeeteeteeeeteeseeeseeeeeeseeeeeseeessseessssesessssessssensssseesens 20
FIGURE S, OBJECT ATTRIBUTE HIERARCHYveeeeveeteeeeteeeeeeeeeeee et eueeeeeeeeeseeeeseeeneseeseeneenenenens 74
FIGURE 6, HARDWARE FEATURE OBJECT ATTRIBUTE HIERARCHY ...v.evveeeeeeeeeeeeeeeeeeeeeeeenenn 79
FIGURE 7, CERTIFICATE OBJECT ATTRIBUTE HIERARCHY ...cvceteeeteeeeeeeeeeeeeeeeee e eeeeeeeeneneeeens 83
FIGURE 8, KEY ATTRIBUTE DETAIL ..viuteeeeeeeeeteeeeeeteeeetaeseeeeeseeeeseeeeeseessseessssesasssssssseessssesens 87
FIGURE9, DOMAIN PARAMETER ATTRIBUTE DETAIL ...v.viveeteteeteeeeeeeeeeeeeeeeeeeeeseeenssenenenas 122

List of Tables

TABLE L, SYMBOLS.....etteveeteteteeeeeeteeeeteeeeeeeseeesseeeeeseseesseeeeeseseeseseteseeeeseesaseseesesseeeseseseseneanees 9
TABLE 2, PREFIXES ...t tveveeteeeeeeesseeesseseseseassseesssessessseesssessesasessssesssesesssseesasessssssssssessseneessns 9
TABLE 3, CHARACTER SET ...ttt eeeeeeeeteeteeeteeseeeeteeeeeeeeeeseseetaseeeaseneasseeaeeseeeassseesenesanennnnnnas 11
TABLE 4, READ-ONLY SESSION STATES ...tveuteteveeteeeeseeseessseessseessssseessseesssesssssesseseesssesssanes 19
TABLE S, READ/MRITE SESSION STATESvveveeeteeeeeeeeeeeseteesseeeeesseeesseesssseesasssesssseesssessnsns 20
TABLE 6, ACCESSTO DIFFERENT TYPES OBXECTSBY DIFFERENT TYPESOF SESSIONS.............. 21
TABLE 7, SESSION EVENTS. ...t ee ettt ettt eee et eeeee et eeeeeeeeeeeeeeessteeteseesaseneenseeeeseeeansseeseneseneennnnnes 21
TABLE 8, SUMMARY OF CRYPTOKI FUNCTIONSc.vevteveeeeeeteetseeeseeeseeesseesesesessseeseseessseeensnes 28
TABLE 9, MAJOR AND MINOR VERSION VALUES FOR PUBLISHED CRYPTOKI SPECIFICATIONS.38
TABLE 11, SLOT INFORMATION FLAGStiveutetieeeeeeeeeeeeeeeereeesseeseseseessseesessseesssessesesssennenanes 40
TABLE 12, TOKEN INFORMATION FLAGS.....vcveeveeeeteeeeeeeeeeeeeeeeeeeeeeeseeesseeeeeseesassseeseseesseensnsnes 44
TABLE 14, SESSION INFORMATION FLAGSveveveeeeeeeeeeeeeeeeeteeee e eeeeeseeeeeseeessneeseneessenenenanes 50
TABLE 13, MECHANISM INFORMATION FLAGSvveeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeseeeneeeeseeeenannnas 62
TABLE 16, C_INITIALIZE PARAMETER FLAGS......cviviviviietstsesestsestststeesesessses s ssasssssssssssssssnsnns 72
TABLE 15, COMMON OBJIECT ATTRIBUTESeveveeteeeeeeeeeeeeseeesseeesssseeesseeessseessssseessseessseesnsnes 78
TABLE 16, HARDWARE FEATURE COMMON ATTRIBUTESvtvevteeereeesseeseseeeesseeseseessesnenanes 79
TABLE 17, CLOCK OBJIECT ATTRIBUTES. ... v ettt eteeteeeeeeeeeeesseeessseesassesassseesssessssssesseseessesnsnsnes 79
TABLE 18, MONOTONIC COUNTER ATTRIBUTES. ...c.vcetrveveeeereetsseeseseseeesseesesessessseeseseessesssnanes 80
TABLE 19, COMMON STORAGE OBJECT ATTRIBUTES.....ve.veveteeeeeeeeeeeeseeesesessssseeseseesssensnsnes 81
TABLE 20, DATA OBJIECT ATTRIBUTES.tveveeteteeteseeesseseessseesssesssssseesssessssesssssesseseesssssssanes 82
TABLE 21, COMMON CERTIFICATE OBJECT ATTRIBUTES. ...vutevetteeeeeeeseeeeeeeeseeseeeseeeessesnnnsnns 83
TABLE 22, X.509 CERTIFICATE OBIECT ATTRIBUTESvtuveteeeeeeeeeereeesseeseseesssseeseseesseesensnes 84
TABLE 23, X.509 ATTRIBUTE CERTIFICATE OBJECT ATTRIBUTESvtveeeeeeeeeeseeeeeeeeseeenansnns 85
TABLE 24, COMMON FOOTNOTES FOR KEY ATTRIBUTE TABLES......veveeveveeeeeeeeeseeesereessesnensnes 87
TABLE 25, COMMON KEY ATTRIBUTESe.vetteteeeeeeeeeeeeeeeesseeessseeseesseessssessseessssseessseesssessnsnes 89
TABLE 26, COMMON PUBLIC KEY ATTRIBUTESvveveevettetsreeesseeseesseessseessseeessseeseseessssnenanes 90
TABLE 27, MAPPING OF X.509 KEY USAGE FLAGS TO CRYPTOKI ATTRIBUTES FOR PUBLIC
KEY S uuutttuuuruuussssssssssssesssssssssssssssssssssssssssssssssssssssasesasasassbesesesebsbabebebabasebabebebebesebasnrnrnrnrrnns 91
TABLE 28, RSA PUBLIC KEY OBIECT ATTRIBUTESuvevtteteteeeeeeeeeeeeseeeeesessssseeseeeesaeenansns 91

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

TABLE 29, DSA PUBLICKEY OBJECT ATTRIBUTESutitteuieeeteseesiestessessessensesseessessessessessens 92
TABLE 30, ELLIPTIC CURVE PUBLIC KEY OBJECT ATTRIBUTEScoititirieriesieeieeee e i sieseens 93
TABLE 31, DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTES......oiiiiesteeeeeeeeseeseeseessesnens 94
TABLE 32, X9.42 DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTEScc.ceierieeeniesiesieneens 95
TABLE 33, KEA PUBLIC KEY OBJECT ATTRIBUTES......citiuieeeieriestestestessessenseeseessessessessessens 96
TABLE 34, COMMON PRIVATE KEY ATTRIBUTES ...c.ctitirtiriieeeiestesie st siesieseseeseessesseseesseseens 97
TABLE 35, MAPPING OF X.509 KEY USAGE FLAGS TO CRYPTOKI ATTRIBUTES FOR PRIVATE
2 TSP 99
TABLE 36, RSA PRIVATE KEY OBJECT ATTRIBUTESccutiieieiereestesteseessessensesseessessessessessens 99
TABLE 37, DSA PRIVATE KEY OBJECT ATTRIBUTES....ccueruteieieriesiesiesiessesseseeneeseesseseessenes 101
TABLE 38, ELLIPTIC CURVE PRIVATE KEY OBJECT ATTRIBUTES.....coiiiiiereereeeenieseeseeseeseenne 102
TABLE 39, DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES.......cocerirerienieneesee e 103
TABLE 40, X9.42 DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES......cceriereereereennenne 105
TABLE 41, KEA PRIVATE KEY OBJECT ATTRIBUTES.....c.ctirieierieriesiesiessesesee e see e see s 106
TABLE 42, COMMON SECRET KEY ATTRIBUTES.....ccttitieteeeeeeseeseessessessessessesseessessessessessenns 108
TABLE 43, GENERIC SECRET KEY OBJECT ATTRIBUTES ...cuviuieieiesiesiesiessesieseesesseeseesee s 109
TABLE 44, RC2 SECRET KEY OBJECT ATTRIBUTES ...c.vtiteeiieeeeesiessessessessessesseessessesseseessenns 110
TABLE 45, RC4 SECRET KEY OBECTcouviuiiiiriestesiestesieses e i sae s ssesie s seesssssesseseessenes 110
TABLE 46, RC5 SECRET KEY OBEECTcoveieieriestestesteeseeseeeeseessessessessessessesseesssssessessessenns 111
TABLE 47, AES SECRET KEY OBJECT ATTRIBUTES ...c.vertiriieiieieriesie st siesiesseseesee e e see s 112
TABLE 48, DES SECRET KEY OBECTccuveiiieiestestessesseeeeseesaessessessessessessesssesssssessessessenes 112
TABLE 49, DES2 SECRET KEY OBJECT ATTRIBUTESccvtiuiiieieriesie st siesseseseesee e seesee s 113
TABLE 50, DES3 SECRET KEY OBJECT ATTRIBUTESccvtitieieiesiestestessessesseseesesssessessessenns 114
TABLE 51, CAST SECRET KEY OBJECT ATTRIBUTES ...cvtiuieiieieiesie st siesiesiessee e seesee e s 115
TABLE 52, CAST3 SECRET KEY OBJECT ATTRIBUTEScovveuieieiesiesteseessessesseesessseseeseessenns 115
TABLE 53, CAST 128 (CAST5) SECRET KEY OBJECT ATTRIBUTES......ccveteeeeseeeeeeneeseeenees 116
TABLE 54, IDEA SECRET KEY OBIECTcuiiiiieriesiestestessesesseesaesaessestessessessesseessessessessessenns 117
TABLE S5, CDMF SECRET KEY OBIECT ...ccuviiiiiiesiestesiesesee e et sie s see e sse st s sne e 118
TABLE 56, SKIPJACK SECRET KEY OBECT ...c.ciitiiieitieieeieeiesiesie e stessessessesseessessesseseessenns 118
TABLES7, BATON SECRET KEY OBIECTcouiiiiiteriesiesiesies et see st st sie s sae s e s 120
TABLE 58, JUNIPER SECRET KEY OBIECT ...c.covtiitiitesresreeeeeeseesiessestessessessesseesssssessessessenns 121
TABLE 59, COMMON FOOTNOTES FOR DOMAIN PARAMETER ATTRIBUTE TABLES............... 122
TABLE 60, COMMON DOMAIN PARAMETER ATTRIBUTES......ootiiteriestesiessesseseeneeseeseeseessene 123
TABLE 61, DSA DOMAIN PARAMETER OBJECT ATTRIBUTES......coiisieriesieriesee e e see e 123
TABLE 62, DIFFIE-HELLMAN DOMAIN PARAMETER OBJECT ATTRIBUTEScovverieriereenenn 124
TABLE 63, MECHANISMSVS. FUNCTIONSctiitirtirientisiesieeee e see et i sse e s e e see s 229
TABLE 64, PKCS#1 RSA: KEY AND DATA LENGTH....ceiiiieieniesie st 236
TABLE 65, PKCS #1 RSA: MESSAGE GENERATION FUNCTIONS.....ccuciiriirieeeeieseeseeseesnene 237
TABLE 66, PKCS #1 RSA OAEP: ENCODING PARAMETER SOURCES.......coieeeieseeseeseennenne 237
TABLE67, PKCS#1 RSA OAEP: KEY AND DATA LENGTH ...covviriiiierienicscsee e 239
TABLE 68, PKCS#1 RSA PSS: KEY AND DATA LENGTH....coiiievieciesiesiceeeee e 240
TABLE 69, |SO/IEC 9796 RSA: KEY AND DATA LENGTHcoviiiriinieriesicresee e 241
TABLE 70, X.509 (RAW) RSA: KEY AND DATA LENGTH ...coiiiiiieienienieeee e 243

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

Xii PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

TABLE 71, ANS| X9.31 RSA: KEY AND DATA LENGTH..cccciieiitiieciee e esires e 244
TABLE 72, PKCS #1 RSA SIGNATURESWITH MD2, MD5, oOrR SHA-1: KEY AND DATA

[N I PR TTPR 245
TABLE 73, PKCS #1 RSA PSS SIGNATURESWITH SHA-1: KEY AND DATA LENGTH....... 246
TABLE 74, ANS| X9.31 RSA SIGNATURESWITH SHA-1: KEY AND DATA LENGTH.......... 246
TABLE 75, DSA: KEY AND DATA LENGTH....ctiiiiiiiiiiiesiieessieee st sises s e s 248
TABLE 76, DSA WITH SHA-1: KEY AND DATA LENGTH ...vviiiiii et 248
TABLE 77, FORTEZZA TIMESTAMP. KEY AND DATA LENGTH..ccoiiiiiiiieiniee e 249
TABLE 78, EC: KEY DERIVATION FUNCTIONS.....ceiiiiiieiireeesieeesieeesseessseessssesesssessnssessnsenas 253
TABLE 79, X9.42 DIFFIE-HELLMAN KEY DERIVATION FUNCTIONS.......ceiiiiiiiiiee e 260
TABLE 80, KEA PARAMETER VALUES AND OPERATIONS.....ccciitieeireresreeessresesssessnsenssnsenns 269
TABLE 81, RC2-ECB: KEY AND DATA LENGTH ...oociiiiiiiii e 276
TABLE 82, RC2-CBC: KEY AND DATA LENGTH....cicttieiieeeitieeeitiessreessreeesisesessses e s 277
TABLE 83, RC2-CBC WITH PKCS PADDING. KEY AND DATA LENGTH....cceviiieeeiiee e 278
TABLE 85, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH....coccuiiierrieeieeeieeen 278
TABLE 86, RC2-MAC: KEY AND DATA LENGTH....coiiiiiiiiiinieniini s 279
TABLE 87, RC4: KEY AND DATA LENGTHvttiiiieiiiiecsiieeerieeessteessree s sreessssesennsessnsnessnnees 280
TABLE 88, RC5-ECB: KEY AND DATA LENGTH ...occiiiiiiiii s 283
TABLE 89, RC5-CBC: KEY AND DATA LENGTH...cccutiiiieieenieesiee e esiee e s see e ee e 284
TABLE 90, RC5-CBC WITH PKCS PADDING. KEY AND DATA LENGTH....ccceviiieeiiiee e 285
TABLE 92, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH....coicuiiieriieeieeeeeeee 286
TABLE 93, RC5-MAC: KEY AND DATA LENGTH....ciiiiiiiiinieii s 286
TABLE 94, AES-ECB: KEY AND DATA LENGTH ..ciiiiiiciieeciie et siee e e s 288
TABLE 95, AES-CBC: KEY AND DATA LENGTH....ccviiiiiriiii i 289
TABLE 96, AES-CBC WITH PKCS PADDING. KEY AND DATA LENGTH...ccceiiieiieeeieeneen. 290
TABLE 98, GENERAL-LENGTH AES-MAC: KEY AND DATA LENGTH....cceviiieeeiiee e 290
TABLE 99, AES-MAC: KEY AND DATA LENGTH...ccuviieiieeeitieecieescreeesnee s essses e s 291
TABLE 100, GENERAL BLOCK CIPHER ECB: KEY AND DATA LENGTH.....covviveiiiieeniiee e, 293
TABLE 101, GENERAL BLOCK CIPHER CBC: KEY AND DATA LENGTHeeiiiiiieeieeeieee 294

TABLE 102, GENERAL BLOCK CIPHER CBC WITH PKCS PADDING. KEY AND DATA LENGTH295
TABLE 104, GENERAL-LENGTH GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH.296

TABLE 105, GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH ...covvveriiieeeiiee e, 296
TABLE 106, SKIPJACK-ECB64: DATA AND LENGTH ...eviiiiiieciie et sree s 301
TABLE 107, SKIPJACK-CBC64: DATA AND LENGTH....ccciiiiiiniinees e 301
TABLE 108, SKIPJACK-OFB64: DATA AND LENGTH ...cciiitiieiiieecieeesiee e esseessseee s 302
TABLE 109, SKIPJACK-CFB64: DATA AND LENGTH ...ooocviiiiiiiiniiecice e 302
TABLE 110, SKIPJACK-CFB32: DATA AND LENGTH ...cviiiiiieeiie e ciee e esree e 303
TABLE 111, SKIPJACK-CFB16: DATA AND LENGTH ...occcviiiiiniiniiecsresre e 303
TABLE 112, SKIPJACK-CFB8: DATA AND LENGTHvvviiiiieciie e siee e 304
TABLE 113, BATON-ECB128: DATA AND LENGTH....cociiiiiiiiniiniinicesre e 305
TABLE 114, BATON-ECB96: DATA AND LENGTH....ciiiiiiiiiiesieeecieeesree s essses e s 305
TABLE 115, BATON-CBC128: DATA AND LENGTH ...cociiiiiiiiiiriie e 306
TABLE 116, BATON-COUNTER: DATA AND LENGTH...ccciiieiitieecieeesiee s esnressseee s 306

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

INTRODUCTION Xiii

TABLE 117, BATON-SHUFFLE: DATA AND LENGTH ...ocoviiiiiiieiiceesiecre e 307
TABLE 118, JUNIPER-ECB128: DATA AND LENGTH....cciciiiiniiniiseesisie e 308
TABLE 119, JUNIPER-CBC128: DATA AND LENGTHociiviiiiiiieiiceesreere e 308
TABLE 120, JUNIPER-COUNTER: DATA AND LENGTH.....ciciiiiiiinni e 309
TABLE 121, JUNIPER-SHUFFLE: DATA AND LENGTH ..ot 309
TABLE 122, MD2: DATA LENGTH...ocviiiiiriiii it 310
TABLE 123, GENERAL-LENGTH MD2-HMAC: KEY AND DATA LENGTH...ccceeviviiieeeieenen. 310
TABLE 124, MDS: DATA LENGTH...ccviiiiitiiie it 312
TABLE 125, GENERAL-LENGTH MD5-HMAC: KEY AND DATA LENGTH...ccceiiiviiieeeieenen. 312
TABLE 126, SHA-1: DATA LENGTH....ccciiiiiiiiiiinii s 314
TABLE 127, GENERAL-LENGTH SHA-1-HMAC: KEY AND DATA LENGTH....ccccveieeaieanen. 314
TABLE 128, FASTHASH: DATA LENGTH.....ciiiiiiiiiniesenre s 316
TABLE 129, PKCS #5 PBKDF2 KEY GENERATION: PSEUDO-RANDOM FUNCTIONS........... 319
TABLE 130, PKCS #5 PBKDF2 KEY GENERATION: SALT SOURCES......cociiieiniininnsieesiennnen 320
TABLE 131, MD5 MACINGIN SSL 3.0: KEY AND DATA LENGTH ..cooveiiieeiee e 334
TABLE 132, SHA-1 MACINGIN SSL 3.0: KEY AND DATA LENGTH ...ocvviiiiiininieceesiee 335
TABLE 133, RIPE-MD 128: DATA LENGTH.....ciiiiiiiiesiicie et 346
TABLE 134, GENERAL-LENGTH RIPE-MD 128-HMAC..........ccooiiii, 347
TABLE 135, RIPE-MD 160: DATA LENGTH.....ciiiiiiiieniiiie e 347
TABLE 136, GENERAL-LENGTH RIPE-MD 160-HMAC..........ccooii, 348

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

1. INTRODUCTION 1

1. Introduction

As cryptography begins to see wide gpplication and acceptance, one thing is increasingly clear:
if it is going to be as effective as the underlying technology alows it to be, there must be
interoperable sandards. Even though vendors may agree on the basic cryptographic
techniques, compatibility between implementations is by no means guaranteed. Interoperability
requires strict adherence to agreed- upon standards.

Towards that goal, RSA Laboratories has developed, in cooperation with representatives of
indugtry, academia and government, a family of standards called Public-Key Cryptography
Standards, or PKCS for short.

PKCS is offered by RSA Laboratories to developers of computer systems employing public-
key and related technology. It is RSA Laboratories intention to improve and refine the
gandardsin conjunction with computer system developers, with the goa of producing standards
that most if not all developers adopt.

Therole of RSA Laboratoriesin the standards-making process is four-fold:
1. Publish carefully written documents describing the standards.

2. Salicit opinions and advice from developers and users on useful or necessary
changes and extensions.

3. Publish revised standards when agppropriate.
4, Provide implementation guides and/or reference implementations.

During the process of PKCS development, RSA Laboratories retains find authority on each
document, though input from reviewersis clearly influentia. However, RSA Laboratories god
is to accelerate the development of formal standards, not to compete with such work. Thus,
when a PKCS document is accepted as a base document for a forma standard, RSA
Laboratories rdinquishes its “ownership” of the document, giving way to the open sandards
development process. RSA Laboratories may continue to develop related documents, of
course, under the terms described above.

PKCS documents and information ae available online a
http://ww.rsasecurity.con rsal abs/ PKCS/. There is an dectronic
maling lid, “cryptoki”, a rsasecurity.com gsecficdly for discusson and
devdopment of PKCS #11 To subscribe to this list, send emal to
maj or dono@r sasecurity. comwith the line “subscri be cryptoki” inthe
message body. To unsubscribe, send e-mall tonaj or donmo@r sasecuri ty. comwith
theline“unsubscri be crypt oki ” inthe message body.

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

2 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Comments on the PKCS documents, requests to register extensons to the standards, and
suggestions for additional standards are welcomed. Address correspondence to:

PKCS Editor

RSA Laboratories

20 Crosby Drive

Bedford, MA 01730 USA
pkcs-editor@sasecurity.com

http://ww. rsasecurity. conirsal abs/ PKCS/

It would be difficult to enumerate al the people and organizations who helped to produce
PKCS#11. RSA Laboratoriesis grateful to each and every one of them. Specid thanks go to
Bruno Couillard of Chrysdis-ITS and John Centafont of NSA for the many hours they spent
writing up parts of this document.

For Verson 1.0, PKCS #11's document editor was Aram Pérez of International Computer
Services, under contract to RSA Laboratories; the project coordinator was Burt Kaliski of
RSA Laboratories. For Verson 2.01, Ray Sidney served as document editor and project
coordinator. Matthew Wood of Intel was document editor and project coordinator for Verson
2.10 and Version 2.11.

2. Scope

This sandard specifies an gpplication programming interface (API), cadled “Cryptoki,” to
devices which hold cryptographic information and perform cryptographic functions. Cryptoki,
pronounced “crypto-key” and short for “cryptographic token interface” follows a smple
obj ect-based approach, addressing the goals of technology independence (any kind of device)
and resource sharing (multiple gpplications accessng multiple devices), presenting to
applications acommon, logica view of the device caled a* cryptographic token”.

This document specifies the data types and functions available to an gpplication requiring
cryptographic services using the ANSI C programming language. These data types and
functions will typicaly be provided via C header files by the supplier of a Cryptoki library.
Generic ANSI C header files for Cryptoki are available from the PKCS Web page. This
document and up-to-date erratafor Cryptoki will also be available from the same place.

Additional documents may provide a generic, language-independent Cryptoki interface and/or
bindings between Cryptoki and other programming languages.

Cryptoki isolates an gpplication from the details of the cryptographic device. The gpplication
does not have to change to interface to a different type of device or to run in a different
environment; thus, the application is portable. How Cryptoki provides this isolation is beyond
the scope of this document, athough some conventions for the support of multiple types of
device will be addressed here and possibly in a separate document.

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

3. REFERENCES 3

A number of cryptographic mechanisms (dgorithms) are supported in this verson. In addition,
new mechanisms can be added later without changing the generd interface. It is possible that
additiond mechanisms will be published from time to time in separate documents, it is aso
posshble for token vendors to define their own mechaniams (athough, for the sake of
interoperability, registration through the PKCS processis preferable).

Cryptoki Versgon 2.11 is intended for cryptographic devices associated with a Sngle user, 0
some features that might be included in a generd-purpose interface are omitted. For example,
Cryptoki Verson 2.11 does not have a means of digtinguishing multiple users. The focusison a
sngle user’s keys and perhaps a smal number of certificates related to them. Moreover, the
emphasis is on cryptogrgphy. While the device may perform useful non-cryptographic
functions, such functions are lft to other interfaces.

3. References

ANSI C ANSI/ISO. ANS/ISO 9899: American National Sandard for
Programming Languages— C. 1990.

ANSI X9.31 Accredited Standards Committee X9. Digital Sgnatures Using
Reversible Public Key Cryptography for the Financial Services
Industry (rDSA). September 9, 1998.

ANSI X9.42 Accredited Standards Committee X9. Public Key Cryptography for the
Financial Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography. March 9, 2001.

ANS| X9.62 Accredited Standards Committee X9. Public Key Cryptography for the
Financial Services Industry: The Elliptic Curve Digital Sgnature
Algorithm (ECDSA). 1998.

ANSI X9.63 Accredited Standards Committee X9. Public Key Cryptography for the
Financial Services Industry: Key Agreement and Key Transport Using
Elliptic Curve Cryptography. Working draft, November 8, 2000.

CDPD Ameritech Mobile Communications e d. Cellular Digital Packet Data
System Specifications. Part 406: Airlink Security. 1993.

FIPSPUB 46-3 Nationd Inditute of Standards and Technology (formerly Nationa Bureau
of Standards). FIPS PUB 46-3. Data Encryption Sandard. October
25, 1999.

FIPSPUB 74 Nationd Indtitute of Standards and Technology (formerly Nationd Bureau
of Standards). FIPS PUB 74: Guidelines for Implementing and Using
the NBS Data Encryption Standard. April 1, 1981.

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

FIPS PUB 81

FIPSPUB 113

FIPS PUB 180-1

FIPS PUB 186-2

FORTEZZA CIPG

GCS-AP

1SO 7816-1

SO 7816-4

ISO/IEC 9796

PCMCIA

PKCS#1

PKCS#3

PKCS#5

PKCS#7

PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Nationd Indtitute of Standards and Technology (formerly Nationd Bureau
of Standards). FIPS PUB 81: DES Modes of Operation. December
1980.

Nationa Ingtitute of Standards and Technology (formerly Nationa Bureau
of Standards). FIPS PUB 113: Computer Data Authentication. May
30, 1985.

Nationd Indtitute of Standards and Technology. FIPSPUB 180-1: Secure
Hash Sandard. April 17, 1995.

National Indtitute of Standards and Technology. FIPS PUB 186-2: Digital
Sgnature Sandard. January 27, 2000.

NSA, Workstation Security Products. FORTEZZA Cryptologic
Interface Programmers Guide, Revision 1.52. November 1995.

X/Open Company Ltd. Generic Cryptographic Service APl (GCSAPI),
Base - Draft 2. February 14, 1995.

I1SO. International Standard 7816-1: Identification Cards —
Integrated Circuit(s) with Contacts — Part 1. Physical
Characteristics. 1987.

ISO. Identification Cards — Integrated Circuit(s) with Contacts —
Part 4: Inter-industry Commands for Interchange. Committee draft,
1993.

ISO/IEC. International Standard 9796: Digital Sgnature Scheme
Giving Message Recovery. July 1991.

Persond Computer Memory Card Internationa Association. PC Card
Sandard. Release2.1, July 1993.

RSA Laboratories. RSA Encryption Standard. Version 2.0, October 1,
1998.

RSA Laboratories. Diffie-Hellman Key-Agreement Standard. Version
1.4, November 1993.

RSA Laboratories. Password-Based Encryption Sandard. Version 2.0,
March 25, 1999.

RSA Laboratories. Cryptographic Message Syntax Standard. Verson
1.5, November 1993.

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

3. REFERENCES

PKCS#8

PKCS#12

RFC 1319

RFC 1321

RFC 1421

RFC 2246

RFC 2279

RFC 2743

RFC 2744

SEC1

SEC 2

X.500

X.509

RSA Laboratories. Private-Key Information Syntax Standard. Version
1.2, November 1993.

RSA Laboratories. Personal Information Exchange Syntax Standard.
Verson 1.0, June 24, 1999.

B. Kdiski. RFC 1319: The MD2 Message-Digest Algorithm. RSA
Laboratories, April 1992.

R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT
Laboratory for Computer Science and RSA Data Security, Inc., April
1992.

J Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail:
Part |. Message Encryption and Authentication Procedures. 1AB IRTF
PSRG, IETF PEM WG, February 1993.

T. Dieeks & C. Allen. RFC 2246: The TLS Protocol Version 1.0.
Certicom, January 1999

F. Yergeau. RFC 2279: UTF-8, a transformation format of 1SO 10646
Alis Technologies, January 1998.

J Linn. RFC 2743: Generic Security Service Application Program
Interface Version 2, Update 1. RSA Laboratories, January 2000

J Wray. RFC 2744: Generic Security Services APl Version 2. G
bindings. Iris Associates, January 2000.

Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography. Verson
1.0, September 20, 2000.

Standards for Efficient Cryptography Group (SECG). Standards for
Effidet Cryptography (SEC) 20 Recommended Elliptic Curve Domain
Parameters. Version 1.0, September 20, 2000.

ITU-T (formerly CCITT). Recommendation X.500: The Directory—
Overview of Concepts, Models and Services. 2001.

ITU-T (formerly CCITT). Recommendation X.509: The Directory—
Public-Key and Attribute Certificate Frameworks. 2000.

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

X.680

X.690

PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ITU-T (formely CCITT). Recommendation X.680: Information
Technology-- Abstract Syntax Notation One (ASN.1): Specification of
Basic Notation. July 1994.

ITU-T (formerly CCITT). Recommendation X.690: Information
Technology—ASN.1 Encoding Rules. Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER), and Distinguished

Encoding Rules (DER). July 1994.

4. Definitions

For the purposes of this standard, the following definitions gpply:

API
Application
ASN.1
Attribute
BATON
BER
CAST
CAST3

CAST5

CAST128

CBC

CDMF

Certificate

Cryptographic Device

Copyright © 1994-2001 RSA Security Inc.

Application programming interface.

Any computer program that cals the Cryptoki interface.
Abgtract Syntax Notation One, as defined in X.680.

A characterigtic of an object.

MISSI’s BATON block cipher.

Basic Encoding Rules, as defined in X.690.

Entrust Technologies proprietary symmetric block cipher.
Entrust Technologies proprietary symmetric block cipher.

Another name for Entrust Technologies' symmetric block
cipher CAST128. CAST128 isthe preferred name.

Entrust Technologies symmetric block cipher.
Cipher-Block Chaining mode, as defined in FIPS PUB 81.

Commercid Data Masking Facility, a block encipherment
method specified by International Business Machines
Corporation and based on DES.

A sgned message binding a subject name and a public
key, or asubject name and a set of attributes.

A device gtoring cryptographic information and possibly
performing cryptographic functions. May be implemented

Revision 1, November 2001

4. DEFINITIONS

Cryptoki

Cryptoki library

DER
DES

DSA

EC

ECDH
ECDSA
ECMQV
FASTHASH
IDEA
JUNIPER
KEA
LYNKS
MAC

MD2

MD5

M echanism

MQV

Revision 1, November 2001

asasmart card, smart disk, PCMCIA card, or with some
other technology, including software-only.

The Cryptographic Token Interface defined in this
standard.

A library thet implements the functions specified in this
standard.

Distinguished Encoding Rules, as defined in X.690.
Data Encryption Standard, as defined in FIPS PUB 46-3.

Digitd Signature Algorithm, as defined in FIPS PUB 186-
2.

Elliptic Curve ECB Electronic Codebook mode, as
defined in FIPS PUB 81.

Bliptic Curve Diffie-Hdlman.

Elliptic Curve DSA, asin ANSI X9.62.

Elliptic Curve Menezes- Qu-Vangone

MISSI’s FASTHA SH message- digegting dgorithm.
Ascom Systec’ s symmitric block cipher.

MISSI’s JUNIPER block cipher.

MISSI’s Key Exchange Algorithm.

A smart card manufactured by SPY RUS.

Message Authentication Code.

RSA Data Security, Inc.'s MD2 message-digest dgorithm,
as defined in RFC 1319.

RSA Data Security, Inc.'s MD5 message-digest dgorithm,
as defined in RFC 1321

A process for implementing a cryptographic operation.

Menezes-Qu-Vanstone

Copyright © 1994-2001 RSA Security Inc.

8 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

OAEP

Object

PIN
RSA
RC2

RC4

RC5

Reader

Session
SET

SHA-1

Slot
SKIPJACK
SSL

Subject Name

SO

Token

User

UTF-8

Copyright © 1994-2001 RSA Security Inc.

Optima Asymmetric Encryption Padding for RSA.

Anitemthet is stored on atoken. May be data, a
certificate, or akey.

Persona Identification Number.
The RSA public-key cryptosystem.
RSA Data Security’s RC2 symmetric block cipher.

RSA Data Security’s proprietary RC4 symmetric stream
cipher.

RSA Data Security’ s RC5 symmetric block cipher.

The means by which information is exchanged with a
device.

A logica connection between an application and atoken.
The Secure Electronic Transaction protocol.

The (revised) Secure Hash Algorithm, as defined in FIPS
PUB 180-1.

A logica reader that potentidly contains atoken.
MISSI’s SKIPJACK block cipher.
The Secure Sockets Layer 3.0 protocal.

The X.500 digtinguished name of the entity to which akey
isassigned.

A Security Officer user.

Thelogicd view of acryptographic device defined by
Cryptoki.

The person using an gpplication that interfaces to Cryptoki.

Universal Character Set (UCS) transformation format
(UTF) that represents SO 10646 and UNICODE strings
with avariable number of octets.

Revision 1, November 2001

5. SYMBOLSAND ABBREVIATIONS

5. Symbols and abbreviations

The following symbols are used in this sandard:

Table 1, Symbols

Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes

Prefix | Description
C_ Function
CK_ Datatype or general congtant
CKA_ | Attribute

CKC_ | Cetificate type

CKD_ | Key derivaion function

CKF_ | Bitflag

CKG_ | Mask generation function
CKH_ | Hardware feature type

CKK_ | Key type

CKM_ | Mechaniam type

CKN_ [Natification

CKO_ | Object class

CKP_ | Pseudo-random function

CKS_ | Sesson gstate

CKR_ | Returnvdue

CKU_ | Usertype

CKZ_ | Sdt/Encoding parameter source
h ahandle

aCK_ULONG
p apointer
pb apointer toaCK_BYTE

Revision 1, November 2001

Copyright © 1994-2001 RSA Security Inc.

10 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Prefix | Description
ph apointer to ahandle
pul apointer toaCK_ULONG

Cryptoki is based on ANSI C types, and defines the following data types:

/* an unsigned 8-bit value */
typedef unsigned char CK_BYTE;

/* an unsigned 8-bit character */
typedef CK BYTE CK_CHAR

/* an 8-bit UTF-8 character */
t ypedef CK BYTE CK_UTF8CHAR;

/* a BYTE-sized Bool ean flag */
typedef CK BYTE CK BBOOL;

/* an unsigned value, at least 32 bits long */
typedef unsigned long int CK ULONG

/* a signed value, the sane size as a CK_ULONG */
typedef long int CK _LONG

/* at least 32 bits; each bit is a Boolean flag */
typedef CK ULONG CK_FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type voi d, which
are implementation-dependent. These pointer types are:

CK_BYTE_PTR /* Pointer to a CK BYTE */
CK_CHAR PTR /* Pointer to a CK CHAR */

CK _UTF8CHAR PTR /* Pointer to a CK UTF8CHAR */
CK_ULONG _PTR /[* Pointer to a CK ULONG */
CK VO D _PTR /[* Pointer to a void */

Cryptoki aso defines apointer to aCK_VOID_PTR, which isimplementation-dependent:

CK_ VO D PTR PTR /* Pointer to a CK VO D PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is digtinct from any valid pointer:

NULL_PTR /* A NULL pointer */

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

5. SYMBOLSAND ABBREVIATIONS 11

It follows that many of the data and pointer types will vary somewhat from one environment to
another .g., a CK_ULONG will sometimes be 32 bits, and sometimes perhaps 64 hits).

However, these details should not affect an gpplication, assuming it is compiled with Cryptoki
header files condggtent with the Cryptoki library to which the application is linked.

All numbers and vaues expressed in this document are decimd, unless they are preceded by
“Ox”, inwhich case they are hexadecima vaues.

The CK_CHAR data type holds characters from the following table, taken from ANSI C.

Table 3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXY Za
bcdefghijklmnopqgrstuvwxyz

Numbers 0123456789

Graphiccharacters [!'“#%& ' ()* +,-./:;<=>?[\]"_{|} ~

Blank character ‘!

The CK_UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified in
RFC2279. UTF-8 dlows internationdization while maintaining backward compatibility with the
Locdl String definition of PKCS#11 version 2.01.

In Cryptoki, aflag is a Boolean flag that can be TRUE or FALSE. A zero vaue meansthe flag
is FALSE, and a nonzero value means the flag is TRUE. Cryptoki defines these macras, if
needed:

#i f ndef FALSE
#defi ne FALSE 0
#endi f

#i f ndef TRUE
#defi ne TRUE (! FALSE)
#endi f

Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are idedl

tools for implementing public-key cryptography, as they provide away to store the private-key
component of a public-key/private-key pair securely, under the control of a Sngle user. With

such a device, a cryptographic application, rather than performing cryptographic operations
itsdf, utilizes the device to perform the operations, with sengtive information such as private
keys never being reveded. As more gpplications are developed for public-key cryptography, a
standard programming interface for these devices becomes increasingly valuable. This standard
addresses this need.

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

12 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

6. General overview

6.1 Design goals

Cryptoki was intended from the beginning to be an interface between gpplications and dl kinds
of portable cryptographic devices, such as those based on smart cards, PCMCIA cards, and
smart diskettes. There are dready standards (de facto or officid) for interfacing to these
devices a some level. For ingtance, the mechanica characterigtics and electrical connections
are well-defined, as are the methods for supplying commands and receiving results. (See, for
example, ISO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. It would
not be enough smply to define command sets for each kind of device, as that would not solve
the generd problem of an application interface independent of the device. To do 0 is dill a
long-term god, and would certainly contribute to interoperability. The primary goa of Cryptoki
was a lower-level programming interface that abstracts the details of the devices, and presents
to the gpplication a common mode of the cryptographic device, cdled a“cryptographic token”
(or smply “token”).

A secondary god was resource-sharing. As desktop multi-tasking operating syslems become
more popular, a single device should be shared between more than one gpplication. In addition,
an gpplication should be able to interface to more than one device a a given time.

It is not the god of Cryptoki to be a generic interface to cryptographic operations or security
sarvices, dthough one certainly could build such operations and services with the functions that
Cryptoki provides. Cryptoki isintended to complement, not compete with, such emerging and
evolving interfaces as “Generic Security Services Application Programming Interface” (RFC
2743 and RFC 2744) and “ Generic Cryptographic Service API” (GCS-AP!) from X/Open.

6.2 General moded

Cryptoki's generd modd is illudrated in the following figure. The modd begins with one or
more gpplications that need to perform certain cryptographic operations, and ends with one or
more cryptographic devices, on which some or al of the operations are actudly performed. A
user may or may not be associated with an application.

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

6. GENERAL OVERVIEW 13

Application 1 Application k
Other Security Lavers Other Security Lavers |
Crvptoki Cryptoki

= —

Slot 1 Slot n
Token 1 Token n
(Device 1) (Device n)

Figurel, General Cryptoki Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the
system through a number of “dots’. Each dot, which corresponds to a physical reader or other
device interface, may contain a token. A token is typicdly “present in the dot” when a
cryptographic deviceis present in the reader. Of course, since Cryptoki provides alogical view
of dots and tokens, there may be other physica interpretations. It is possible that multiple dots
may share the same physicd reader. The point is that a system has some number of dots, and
gpplications can connect to tokensin any or dl of those dots.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typicadly passed through standard device drivers, for
instance PCMCIA card services or socket services. Cryptoki makes each cryptographic
device look logicdly like every other device, regardiess of the implementation technology. Thus
the application need not interface directly to the device drivers (or even know which ones are
involved); Cryptoki hides these detalls. Indeed, the underlying “device’ may be implemented
entirdly in software (for indance, as a process running on a server)—no specia hardware is
necessary.

Cryptoki is likdy to be implemented as a library supporting the functions in the interface, and
goplications will be linked to the library. An gpplication may be linked to Cryptoki directly;
dternatively, Cryptoki can be a so-cdled “shared” library (or dynamic link library), in which

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

14 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

cae the gpplication would link the library dynamicdly. Shared libraries are fairly
graightforward to produce in operating systems such as Microsoft Windows and OS2, and
can be achieved without too much difficulty in UNIX and DOS systems.

The dynamic gpproach certainly has advantages as new libraries are made available, but from a
security perspective, there are some drawbacks. In particular, if a library is easly replaced,

then there is the possibility that an attacker can substitute a rogue library that intercepts a user’s
PIN. From a security perspective, therefore, direct linking is generdly preferable, dthough

code-9gning techniques can prevent many of the security risks of dynamic linking. In any case,
whether the linking is direct or dynamic, the programming interface between the application and
a Cryptoki library remains the same.

The kinds of devices and capabilities supported will depend on the particular Cryptoki library.
This standard specifies only the interface to the library, not its features. In particular, not al

libraries will support dl the mechanisms (dgorithms) defined in thisinterface (Snce not al tokens
are expected to support dl the mechanisms), and libraries will likely support only a subset of dl

the kinds of cryptographic devices that are available. (The more kinds, the better, of course,
and it is anticipated thet libraries will be developed supporting multiple kinds of token, rather
than just those from a single vendor.) It is expected that as gpplications are developed that
interface to Cryptoki, standard library and token “profiles’ will emerge.

6.3 Logical view of atoken

Cryptoki’slogica view of atoken isadevice that stores objects and can perform cryptographic
functions. Cryptoki defines three classes of object: data, certificates, and keys. A data object
is defined by an application. A certificate object stores a certificate. A key object stores a
cryptographic key. The key may be a public key, a private key, or a secret key; each of these
types of keys has subtypes for use in specific mechaniams. This view is illustrated in the
following figure

Object

m

Data Key Certificate

m

Public Key Private Key Secret Key

Figure 2, Object Hierarchy

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

6. GENERAL OVERVIEW 15

Objects are dso classfied according to their lifetime and vishility. “Token objects’ are vishle
to al gpplications connected to the token that have sufficient permission, and remain on the
token even dafter the “sessons’ (connections between an application and the token) are closed
and the token is removed from its dot. “Session objects’ are more temporary: whenever a
sesson is closed by any means, dl sesson objects created by that sesson are automaticaly
destroyed. In addition, session objects are only visible to the application which crested them.

Further classfication defines access requirements. Applications are not required to log into the
token to view “public objects’; however, to view “private objects’, a user must be
authenticated to the token by a PIN or some other tokendependent method (for example, a
biometric device).

See Table 6 on page 21 for further clarification on access to objects.

A token can create and destroy objects, manipulate them, and search for them. It can dso
perform cryptographic functions with objects. A token may have an internd random number
generator.

It is important to distinguish between the logical view of atoken and the actua implementation,
because not al cryptographic devices will have this concept of “objects,” or be able to perform
every kind of cryptographic function. Many devices will amply have fixed storage places for
keys of a fixed agorithm, and be able to do a limited set of operations. Cryptoki's role is to
trandate this into the logica view, mapping attributes to fixed storage eements and o on. Not
al Cryptoki libraries and tokens need to support every object type. It is expected that standard
“profiles’ will be developed, specifying sets of dgorithms to be supported.

“Attributes’ are characteridtics that distinguish an instance of an object. In Cryptoki, there are
generd attributes, such as whether the object is private or public. There are dso attributes that
are specific to aparticular type of object, such as a modulus or exponent for RSA keys.

6.4 Users

This version of Cryptoki recognizes two token user types. Onetypeis a Security Officer (SO).
The other type is the normd user. Only the norma user is dlowed access to private objects on
the token, and that access is granted only after the normal user has been authenticated. Some
tokens may aso require that a user be authenticated before any cryptographic function can be
performed on the token, whether or not it involves private objects. The role of the SO is to
initialize a token and to set the norma user’s PIN (or otherwise define, by some method outsde
the scope of this verson of Cryptoki, how the norma user may be authenticated), and possibly
to manipulate some public objects. The normd user cannot log in until the SO has set the
normal user’s PIN.

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

16 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Other than the support for two types of user, Cryptoki does not address the reationship
between the SO and a community of users. In particular, the SO and the norma user may be
the same person or may be different, but such matters are outsde the scope of this standard.

With respect to PINs that are entered through an application, Cryptoki assumes only that they
are variable-length strings of characters from the st in Table 3. Any trandation to the device's
requirements is left to the Cryptoki library. The following issues are beyond the scope of
Cryptoki:

Any padding of PINs.
How the PINs are generated (by the user, by the application, or by some other means).

PINs that are supplied by some means other than through an application (e.g., PINs entered via
a PINpad on the token) are even more abstract. Cryptoki knows how to wait (if need be) for
such aPIN to be supplied and used, and little more.

6.5 Applicationsand ther use of Cryptoki

To Cryptoki, an gpplication conssts of a sngle address space and al the threads of control
running in it. An gpplication becomes a “Cryptoki gpplication” by caling the Cryptoki function
C_Initialize (see Section 11.4) from one of its threads;, after this cdl is made, the application
can cdl other Cryptoki functions. When the gpplication is done using Cryptoki, it cals the
Cryptoki function C_Finalize (see Section 11.4) and ceasesto be a Cryptoki application.

6.5.1 Applicationsand processes

In genera, on mogt platforms, the previous paragraph means that an gpplication conssts of a
single process.

Consider a UNIX process P which becomes a Cryptoki gpplication by cdling C_Initialize,
and then uses the f or k() system cdl to create a child process C. Since P and C have
separate address spaces (or will when one of them performs a write operation, if the operating
sysem follows the copy-on-write paradigm), they are not pat of the same agpplication.
Therefore, if C needs to use Cryptoki, it needs to perform its own C_Initialize cal.
Furthermore, if C needs to be logged into the token(s) that it will access via Cryptoki, it needs
to log into them even if P already logged in, snce P and C are completely separate
goplications.

In this particular case (when C is the child of a process which is a Cryptoki application), the
behavior of Cryptoki is undefined if C triesto use it without itsown C_Initialize cdl. 1dedly,
such an attempt would return the value CKR_CRYPTOKI_NOT _INITIALIZED; however,
because of theway f or k() works, ingsting on this return value might have a bad impact on

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

6. GENERAL OVERVIEW 17

the performance of libraries. Therefore, the behavior of Cryptoki in this Studion is left
undefined. Applications should definitely not atempt to teke advantage of any potentia
“shortcuts’ which might (or might not!) be available because of this.

In the scenario specified above, C should actudly cdl C_Initialize whether or not it needs to
use Cryptoki; if it has no need to use Cryptoki, it should then cal C_Finalize immediatdy
theregfter. This (having the child immediatdly cdl C_Initialize and then cadl C_Finalize if the
parent is using Cryptoki) is consdered to be good Cryptoki programming practice, Snceit can
prevent the existence of dangling duplicate resources that were created a the time of the
for k() cdl; however, itisnot required by Cryptoki.

6.5.2 Applicationsand threads

Some applications will access a Cryptoki library in a multi-threaded fashion. Cryptoki enables
gpplications to provide information to libraries so that they can give appropriate support for
multi-threading. In particular, when an gpplication initidizes a Cryptoki library with a cdl to
C_Initialize, it can specify one of four possible multi-threading behaviors for the library:

1. The gpplication can specify that it will not be accessing the library concurrently from multiple
threads, and so the library need not worry about performing any type of locking for the sake
of thread-sofety.

2. The gpplication can specify thet it will be accessing the library concurrently from multiple
threads, and the library must be adle to use native operation system synchronization
primitives to ensure proper thread- safe behavior.

3. The gpplication can specify that it will be accessng the library concurrently from multiple
threads, and the library must use a set of gpplicationsupplied synchronization primitives to
ensure proper thread-safe behavior.

4. The application can specify that it will be accessng the library concurrently from multiple
threads, and the libraay must use ether the native operation sysem synchronization
primitives or a set of applicationsupplied synchronization primitives to ensure proper
thread-safe behavior.

The 3% and 4" types of behavior listed above are appropriate for multi-threaded applications
which are not usng the native operating sysem thread model. The gpplication-supplied
gynchronization primitives consst of four functions for handling mutex (mutud exdusion)
objects in the gpplication’s threading modd. Mutex objects are Smple objects which can bein
ether of two States a any given time: unlocked or locked. If acal is made by athread to lock
amutex which is dready locked, that thread blocks (waits) until the mutex is unlocked; then it
locksit and the call returns. If more than one thread is blocking on a particular mutex, and that
mutex becomes unlocked, then exactly one of those threads will get the lock on the mutex and

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

18 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

return control to the caller (the other blocking threads will continue to block and walit for their
turn).

See Section 9.7 for more information on Cryptoki’ s view of mutex objects.

In addition to providing the above thread-handling information to a Cryptoki library at
initidization time, an application can dso goecify whether or not gpplication threads executing
library cals may use native operating system cals to spawn new threads.

6.6 Sessions

Cryptoki requires that an gpplication open one or more sessions with a token to gain access to
the token's objects and functions. A session provides a logica connection between the
gpplication and the token. A session can be a read/write (R/W) session or a read-only (R/O)
sesson. Read/write and read-only refer to the access to token objects, not to sesson objects.
In both session types, an application can create, read, write and destroy session objects, and
read token objects. However, only in a read/write sesson can an application create, modify,
and destroy token objects.

After it opens a session, an application has access to the token’s public objects. All threads of
a given application have access to exactly the same sessons and the same session objects. To
gain access to the token' s private objects, the norma user must log in and be authenticated.

When a session is closed, any session objects which were created in that session are destroyed.
This holds even for session objects which are “being used” by other sessons That is, if asngle
gpplication has multiple sessons open with a token, and it uses one of them to create a sesson
object, then that sesson object is visible through any of that gpplication’s sessons. However,
as soon as the session that was used to create the object is closed, that object is destroyed.

Cryptoki supports multiple sessons on multiple tokens. An gpplication may have one or more
sessions with one or more tokens. In generd, a token may have multiple sessons with one or
more applications. A particular token may alow an gpplication to have only alimited number of
sessions—or only alimited number of read/write sessons-- however.

An open session can be in one of severd states. The session state determines alowable access
to objects and functions that can be performed on them. The session dates are described in
Section 6.6.1 and Section 6.6.2.

6.6.1 Read-only session states

A read-only sesson can be in one of two dates, as illustrated in the following figure. When the
sesson isinitidly opened, it isin ether the “R/O Public Sesson” date (if the application has no

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

6. GENERAL OVERVIEW 19

previoudy open sessions that are logged in) or the “R/O User Functions’ gtate (if the application
aready has an open session that islogged in). Note that read-only SO sessons do not exist.

R/O Public
Session

Close Session/

Open Session Device Removed

Login User
<4
Logout

Open Session Close Session/

Device Removed

R/O User
Functions

Figure 3, Read-Only Session States
The following table describes the sesson sates:

Table 4, Read-Only Session States

State Description

R/O Public Sesson | The application has opened aread-only sesson. The application has
read-only access to public token objects and read/write access to
public session objects.

R/O User Functions | The normal user has been authenticated to the token. The application
has read-only accessto al token objects (public or private) and
read/write access to al sesson objects (public or private).

6.6.2 Read/write session states

A read/write sesson can be in one of three states, asilludrated in the following figure. When
the sesson is opened, it is in ether the “R/W Public Sesson” date (if the gpplication has no
previoudy open sessions that are logged in), the “R/W User Functions’ date (if the gpplication
dready has an open session tha the norma user is logged into), or the “R/W SO Functions’
date (if the gpplication dready has an open session that the SO islogged into).

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

20

Open Session

Open Session

PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

R/W SO
Functions

Close Session/
Device Removed

Close Session/

R/W Public

Open Session

Session

Device Removed

Login User

Close Session/
Device Removed

R/W User
Functions

Figure4, Read/Write Session States

The following table describes the session states:

Table5, Read/Write Session States

State

Description

R/W Public Sesson

The application has opened a read/write sesson. The application has
read/write access to al public objects.

R/W SO Functions | The Security Officer has been authenticated to the token. The
gpplication has read/write access only to public objects on the token,
not to private objects. The SO can set the norma user’s PIN.

R/W User Functions | The normal user has been authenticated to the token. The application

has read/write accessto dl objects.

6.6.3 Permitted object accesses by sessions

The following table summarizes the kind of access each type of sesson has to each type of
object. A given type of sesson has ether read-only access, read/write access, or no access
whatsoever to agiven type of object.

Note that creating or deleting an object requires read/write access to it, e.g., a “R/O User
Functions’ session cannot create or del ete a token object.

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

6. GENERAL OVERVIEW 21

Table 6, Accessto Different Types Objects by Different Types of Sessions

Type of session
R/O R/W R/O User R/W R/W
Type of object Public Public User SO
Public session object R/W R/W R/W R/W R/W
Private session object R/W R/W
Public token object R/O R/W R/O R/W R/W
Private token object R/O R/W

As previoudy indicated, the access to a given session object which isshown in Table 6 islimited
to sessons belonging to the application which owns that object (i.e., which created that object).

6.6.4 Session events

Session events cause the session state to change. The following table describes the events:

Table 7, Session Events

Event Occurswhen...

LogInSO the SO is authenticated to the token.

Log In User the norma user is authenticated to the token.

Log Out the gpplication logs out the current user (SO or norma user).
Close Session the gpplication closes the sesson or closes dl sessions.
Device Removed | the device underlying the token has been removed fromits dot.

When the device is removed, dl sessons of al gpplications are automatically logged ouit.

Furthermore, al sessons any goplications have with the device are closed (this latter behavior
was not present in Verson 1.0 of Cryptoki)—an application cannot have a sesson with a token
that is not present. Redidticaly, Cryptoki may not be congtantly monitoring whether or not the
token is present, and so the token’s absence could conceivably not be noticed until a Cryptoki
function is executed. |If the token is re-inserted into the dot before that, Cryptoki might never
know that it was missng.

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

22 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

In Cryptoki Verson 2.11, al sessons that an application has with a token must have the same
loginflogout stetus (i.e., for agiven goplication and token, one of the following holds: dl sessons
are public sessons, dl sessons are SO sessons, or al sessons are user sessions). When an
gpplication’s sesson logs into a token, all of that gpplication’ s sessions with that token become
logged in, and when an agpplication’s sesson logs out of a token, all of that gpplication’s
sessions with that token become logged out. Similarly, for example, if an gpplication dready
has a R/O user session open with a token, and then opens a R/W sesson with that token, the
R/\W sesson is automatically logged in.

Thisimplies that a given gpplication may not smultaneoudy have SO sessons and user sessons
open with a given token. It dso implies that if an gpplication has a R/W SO sesson with a
token, then it may not open a R/O session with that token, since R/O SO sessions do not exist.
For the same reason, if an application has a R/O sesson open, then it may not log any other
session into the token as the SO.

6.6.5 Sesson handlesand object handles

A sesson handle is a Cryptoki-assgned vaue that identifies a sesson. It isin many ways akin
to afile handle, and is pecified to functions to indicate which session the function should act on.
All threads of an gpplication have equd access to dl sesson handles. That is, anything that can
be accomplished with a given file handle by one thread can aso be accomplished with that file
handle by any other thread of the same application.

Cryptoki aso has object handles, which are identifiers used to manipulate Cryptoki objects.
Object handles are Imilar to session handles in the sense that vishility of a given object through
an object handle is the same among dl threads of a given gpplication. R/O sessons, of course,
only have read-only access to token objects, whereas R/W sessions have read/write access to
token objects.

Valid session handles and object handles in Cryptoki always have nonzero values. For
developers convenience, Cryptoki defines the following symbolic vaue:

#def i ne CK_I NVALI D_HANDLE 0
6.6.6 Capabilities of sessions

Very roughly speaking, there are three broad types of operations an open session can be used
to perform: administrative operations (such as logging in); object management operations (such
as cregting or destroying an object on the token); and cryptographic operations (such as
computing a message digest). Cryptographic operations sometimes require more than one
function call to the Cryptoki APl to complete. In generd, a Single sesson can perform only one
operation a atime; for this reason, it may be desirable for a single application to open multiple
sessions with a single token. For efficiency’s sake, however, a single sesson on some tokens
can perform the following pars of operaion types smultaneoudy: message digesting and

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

6. GENERAL OVERVIEW 23

encryption; decryption and message digesting; sgnature or MACIing and encryption; and
decryption and veifying sgnaiures or MACs. Deals on peforming smultaneous
cryptographic operations in one session are provided in Section 11.13.

A consequence of the fact that a Single session can, in generd, perform only one operation at a
time is tha an application should never make multiple simultaneous function calls to
Cryptoki which use a common session. If multiple threads of an application attempt to use a
common sesson concurrently in this fashion, Cryptoki does not define what hgppens. This
means that if multiple threads of an gpplication al need to use Cryptoki to access a particular
token, it might be appropriate for each thread to have its own session with the token, unless the
gpplication can ensure by some other means (e.g., by some locking mechanism) that no sessions
are ever used by multiple threads smultaneoudy. This is true regardiess of whether or not the
Cryptoki library was initidized in a fashion which permits safe multi-threaded accessto it. Even
if it is safe to access the library from multiple threeds Smultaneoudly, it is still not necessarily safe
to use a particular session from muitiple threads Smultaneoudly.

6.6.7 Example of use of sessions

We give here a detailed and lengthy example of how multiple applications can make use of
sessons in a Cryptoki library. Despite the somewha panful levd of detal, we highly
recommend reading through this example carefully to understand session handles and object
handles.

We caution that our example is decidedly not meant to indicate how multiple applications
should use Cryptoki smultaneoudy; rather, it is meant to clarify what uses of Cryptoki’s
sessons and objects and handles are permissible. In other words, instead of demondtrating
good technique here, we demondtrate “ pushing the envelope’.

For our example, we suppose that two applications, A and B, are usng a Cryptoki library to
access asgngle token T. Each gpplication has two threads running: A hasthreads A1 and A2,
and B has threads B1 and B2. We assume in what follows that there are no instances where
multiple threads of a sngle gpplication smultaneoudy use the same session, and tha the events
of our example occur in the order specified, without overlgpping each other intime.

1. Al and B1 each initidize the Cryptoki library by cdling C_Initialize (the specifics of
Cryptoki functions will be explaned in Section 11). Note that exactly one cdl to
C_Initialize should be made for each application (as opposed to one cal for every thread,
for example).

2. Al opensaR/W session and receives the sesson handle 7 for the sesson. Since thisis the
first sesson to be opened for A, it isa public sesson.

3. A2 opens a R/O sesson and recelves the sesson handle 4. Since dl of A’sexiging
sessions are public sessions, sesson 4 isaso apublic sesson.

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

24

10.

11.

12.

13.

14,

PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Al attempts to log the SO into sesson 7. The attempt fails, because if sesson 7 becomes
an SO session, then session 4 does, as well, and R/O SO sessions do not exist. Al
receives an error code indicating that the existence of a R/O session has blocked this
attempt tolog in (CKR_SESSION_READ_ONLY_EXISTS).

A2 logs the mormd user into session 7. This turns session 7 into a R/W user sesson, and
turns sesson 4 into a R/O user session. Note that because A1 and A2 belong to the same
application, they have equal access to dl sessions, and therefore, A2 is able to performthis
action.

A2 opens a R/W sesson and receives the sesson handle 9. Since dl of A’sexiging
SESS0ONS are user Sessons, session 9 is aso auser session.

Al closes session 9.

B1 atemptsto log out sesson 4. The attempt fails, because A and B have no accessrights
to each other's sessions or objects. B1 recaves an error message which indicates that
thereis no such session handle (CKR_SESSION_HANDLE _INVALID).

B2 atemptsto close sesson 4. The attempt falsin precisdy the sameway as B1' s attempt
to log out session 4 failed {.e., B2 receives a CKR_SESSION_HANDLE INVALID
error code).

B1 opens a R'W sesson and receives the sesson handle 7. Note that, as far as B is
concerned, thisis the first occurrence of sesson handle 7. A’ssession 7 and B’ssession 7
are completely different sessons.

B1 logsthe SO into [B’s] sesson 7. Thisturns B’ssesson 7 into aR/W SO session, and
has no effect on ether of A’s sessions.

B2 attempts to open a R/O session. The attempt fails, since B dready hasan SO sesson
open, and R/O SO sessions do not exist. B1 receives an error message indicating that the
exigence of an SO sesson has blocked this attempt to open a R/O sesson
(CKR_SESSION_READ_WRITE_SO _EXISTS).

Al uses[A’s] session 7 to create a session object O1 of some sort and receives the object
handle 7. Note that a Cryptoki implementation may or may not support separate spaces of
handles for sessons and objects.

B1 uses [B’s] session 7 to create a token object O2 of some sort and receives the object
handle 7. As with sesson handles, different applications have no access rights to each
other’s object handles, and so B’s object handle 7 is entirdy different from A’s object
handle 7. Of course, snceB1 isan SO session, it cannot create private objects, and so O2
must be a public object (if B1 attempted to creste a private object, the attempt would fail

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

6. GENERAL OVERVIEW 25

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

with error code CKR_USER NOT_LOGGED_IN or
CKR_TEMPLATE_INCONSISTENT).

B2 uses [B’'s] sesson 7 to perform some operation to modify the object associated with
[B’s] object handle 7. This modifies O2.

Al uses [A’S] session 4 to perform an object search operation to get ahandle for O2. The
search returns object handle 1. Note that A’s object handle 1 and B’ s object handle 7 now
point to the same object.

Al atemptsto use [A’s] session 4 to modify the object associated with [A’ 5] object handle
1. The attempt fails, because A’s sesson 4 isa R/O sesson, and is therefore incapable of
modifying O2, which is a token object. Al receives an error message indicating that the
sesson isaR/O sesson (CKR_SESSION_READ_ONLY).

Al uses [A’g] session 7 to modify the object associated with [A’s] object handle 1. This
time, dnce A’ssesson 7 isaR/W sesson, the attempt succeedsin modifying O2.

B1 uses [B’s] sesson 7 to perform an object search operation to find O1. Since Olisa
session object belonging to A, however, the search does not succeed.

A2 uses [A’'s] session 4 to perform some operation to modify the object associated with
[A’s] object handle 7. This operation modifies O1.

A2 uses [A’s] session 7 to destroy the object associated with [A’s] object handle 1. This
destroys O2.

B1 attempts to perform some operation with the object associated with [B’ 5] object handle
7. The atempt fals, snce there is no longer any such object. B1 receives an error
message indicating that its object handle is invdid
(CKR_OBJECT_HANDLE_INVALID).

Al logsout [A’'g sesson 4. Thisturns A’s sesson 4 into a R/O public sesson, and turns
A’ssesson 7 into a R'W public session.

Al closes [A’s] sesson 7. This destroys the session object O1, whichwas created by A’s
sesson 7.

A2 attempt to use [A’s] session 4 to perform some operation with the object associated
with [A’s] object handle 7. The attempt fails, Ince there is no longer any such object. It
returnsa CKR_OBJECT_HANDLE_INVALID.

A2 executesacal to C_CloseAllSessions. Thiscloses[A’s] sesson4. At thispoint, if A
were to open a hew session, the sesson would not be logged in (i.e., it would be a public
session).

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

26 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

27. B2 closes B's| sesson 7. At this point, if B were to open a new session, the session
would not be logged in.

28. A and B each cdl C_Finalize to indicate that they are done with the Cryptoki library.

6.7 Secondary authentication (Deprecated)

Note: The information in this section, 6.7, related to secondary authentication in
Cryptoki has been deprecated in PKCS #11 v2.11 and higher. It is
included here for reasons of backward compatibility. New Cryptoki
implementations and Cryptoki aware applications should not implement
these features. It will not be present in the next major revision of the
specification. An alternative approach is presented in Appendix D.

Cryptoki alows an gpplicationto specify that a private key should be protected by a secondary
authentication mechanism. This mechanism is in addition to the sandard login mechanism
described in section 6.6 for sessons. The mechanism is mogtly trangparent to the gpplication
because the Cryptoki implementation does dmost al of the work.

The intent of secondary authentication is to provide a means for a cryptographic token to
produce digital sgnatures for non-repudiation with reasonable certainty that only the authorized
user could have produced that Sgnature. This cgpability is becoming increasingly important as
digitd sgnature laws are introduced worldwide.

The secondary authentication is based on the following principles:

1. The owner of the private key must be authenticated to the token before secondary
authentication can proceed (i.e. C_Login must have been cdled successtully).

2. If aprivate key is protected by a secondary authentication PIN, then the token must require
that the PIN be presented before each use of the key for any purpose.

3. All secondary authentication operations are done using a mechanism that is trangparent to
the Cryptoki client.

The secondary authentication mechanism adds a couple of subtle points to the way that an
goplication presents an object to a user and generates new private keys with the additiona

protections. The following sections detail the minor additions to applications that are required to
take full advantage of secondary authentication.

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

6. GENERAL OVERVIEW 27

6.7.1 Using keys protected by secondary authentication

Using a private key protected by secondary authentication uses the same process, and call
sequence, as usng a private key that is only protected by the login PIN. In fact, applications
written for Cryptoki Version 2.01 will use secondary authentication without modification.

When a cryptographic operation, such as adigital Sgnature, is Started using a key protected by
secondary authentication, a combination of the Cryptoki implementation and the token will
gather the required PIN vaue. If the PIN is correct, then the operation is alowed to complete.
Otherwise, the function will return an gppropriate error code. The gpplication is not required to
gather PIN information from the user and send it through Cryptoki to the token. It is completely
transparent.

The gpplication can detect when Cryptoki and the token will gather a PIN for secondary
authentication by querying the key for the CKA_SECONDARY _AUTH attribute (see section
10.9). If the attribute vdue is TRUE, then the gpplication can present a prompt to the user.
Since Cryptoki Verson 201 gpplications will not be awae of the
CKA_SECONDARY_AUTH dtribute, the PIN gathering mechanism should make an
indication to the user that an authentication is required.

6.7.2 Generating private keys protected by secondary authentication

To generate a private key protected by secondary authentication, the application supplies the
CKA_SECONDARY_AUTH attribute with vaue TRUE in the private key template. If the
attribute does not exist in the template or has the vaue FALSE, then the privae key is
generated with the norma login protection. See sections 10.9 and 11.14 for more information
about private key templates and key generation functions respectively.

If the new private key is protected by secondary authentication, a combination of the Cryptoki
implementation and the device will transparently gather the initid PIN vaue,

6.7.3 Changing the secondary authentication PIN value

The gpplication causes the device to change the secondary authentication PIN on a private key
usng the C_SetAttributeValue function. The template to the function should contain the
CKA_SECONDARY_AUTH attribute. The vdue of CKA_SECONDARY_AUTH in the
template does not matter.

When the Cryptoki implementation finds this aitribute in a C_SetAttributeValue template, it
causes the device to gather the appropriate vaues. If C_SetAttributeValue is successful, the
PIN has been changed to the new value. See sections 10.9 and 11.7 for more information
about private key objectsand C_SetAttributeValue respectively.

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

28 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

6.7.4 Secondary authentication PIN collection mechanisms

Cryptoki does not specify a mechanism for secondary authentication PIN collection. The only
requirement is that the operation of the collection mechanism is transparent to the client.

Idedlly, secondary authentication PINs will be gathered using a protected path device, but that
can not aways be the case. A Cryptoki implementation may utilize platform specific servicesto
gather PIN vaues, including GUI diaog boxes. While thisis different than the typica avoidance
of nonportable implementation requirements in the design of Cryptoki, it alows secondary
authentication to be utilized by verson 201 aware agpplicaions without changes. If an
application requires PIN vaues to be collected from a protected path, it should insure that the
CKF_PROTECTED_AUTHENTICATION_PATH flag is st in the CK_TOKEN_INFO
gructure.

6.8 Function overview

The Cryptoki APl conggts of a number of functions, spanning dot and token management and
object management, as well as cryptographic functions. These functions are presented in the
following teble:

Table 8, Summary of Cryptoki Functions

Category Function Description
Generd C Initidize initidizes Cryptoki
purpose C Findize clean up miscellaneous Cryptoki- associated
functions resources
C_Getinfo obtains generd information about Cryptoki
C_GetFunctionList obtains entry points of Cryptoki library
functions
Slot andtoken | C_GetSlotList obtainsalig of dotsin the sysem
management C_GetSotinfo obtains information about a particular dot
functions C_GetTokeninfo obtains information about a particular token
C_WaitForSotEvent waits for adot event (token insertion,

removal, etc.) to occur

C_GetMechanismList obtainsalist of mechanisms supported by a

token

C_GetMechanisminfo obtains information about a particular
mechanism

C_InitToken initidizes a token

C _InitPIN initidizes the norma user’sPIN

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

6. GENERAL OVERVIEW

29

Category Function Description
C SetPIN modifiesthe PIN of the current user
Sesson C_OpenSession opens a connection between an application
management and a particular token or setsup an
functions application calback for token insertion
C CloseSession closesasesson
C CloseAllSessions closes al sessonswith atoken
C GetSessoninfo obtains information about the sesson
C_GetOperationState obtains the cryptographic operations state of a
session
C_SetOperationState sets the cryptographic operations State of a
session
C Login logsinto atoken
C_Logout logs out from atoken
Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
functions C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeVaue obtains an attribute vaue of an object
C_SetAttributevVaue modifies an attribute vaue of an object
C_FindObjectsnit initializes an object search operdtion
C_FindObjects continues an object search operation
C_FindObjectsFina finishes an object search operation
Encryption C_Encryptinit initializes an encryption operation
functions C_Encrypt encrypts single-part data
C_EncryptUpdate continues a multiple-part encryption operation
C_EncryptFina finishes a multiple-part encryption operation
Decryption C_Decryptinit initializes a decryption operation
functions C_Decrypt decrypts Sngle-part encrypted data
C_DecryptUpdate continues amultiple-part decryption operation
C_DecryptFina finishes a multiple-part decryption operation
Message C _Digedinit initidizes a message- digesting operation
digesting C Digest digests Sngle-part data
functions C_DigestUpdate continues amultiple-part digesting operation
C DigestKey digests akey
C DigestFind finishes amultiple- part digesting operation

Revision 1, November 2001

Copyright © 1994-2001 RSA Security Inc.

30

PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Category Function Description
Sgning C_Sgninit initilizes a Sgnature operation
and MACing C Sgn ggnssngle-part data
functions C_SignUpdate continues amultiple-part signature operation
C_SignFind finishes a multiple-part Sgnature operation
C_SignRecoverlnit initidizes a ggnature operation, where the data
can be recovered from the signature
C_SignRecover sgnssngle-part data, where the data can be
recovered from the sgnature
Functions for C_Veifylnit initidizes a verification operation
veifying
sgnatures C Veify verifies asgnature on Sngle-part data
and MACs C VerifyUpdate continues amultiple-part verification operation
C VeifyFind finishes amultiple- part verification operation
C_VeifyRecoverlnit initidizes a verification operation where the
datais recovered from the sgnature
C_VerifyRecover verifies asgnature on Sngle-part data, where
the data is recovered from the signature
Dua-purpose C _DigestEncryptUpdate | continues Smultaneous multiple- part digesting
cryptographic and encryption operations
functions C _DecryptDigestUpdate | continues Smultaneous multiple-part
decryption and digesting operations
C_SignEncryptUpdate continues Smultaneous multiple-part signature
and encryption operations
C_DecryptVerifyUpdate | continues Smultaneous multiple-part
decryption and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
functions C_WrapKey wraps (encrypts) akey
C_UnwrapKey unwraps (decrypts) akey
C DeriveKey derives a key from a base key

Copyright © 1994-2001 RSA Security Inc.

Revision 1, November 2001

7. SECURITY CONSIDERATIONS 31

Category Function Description

Random number | C_SeedRandom mixesin additional seed materid to the

generation random number generator

functions C_GenerateRandom generates random data

Pardld function | C_GetFunctionStatus legacy function which dways returns

management CKR_FUNCTION_NOT_PARALLEL

functions C_CancdFunction legacy function which dways returns
CKR_FUNCTION_NOT_PARALLEL

Callback applicationsupplied function to process

function notifications from Cryptoki

7. Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a computer
or communicetions sysem. Two of the particular features of the interface that facilitate such
Security are the following:

1. Access to private objects on the token, and possibly to cryptographic functions and/or
certificates on the token as well, requires a PIN. Thus, possessing the cryptographic device
that implements the token may not be sufficient to useit; the PIN may aso be needed.

2. Additiond protection can be given to private keys and secret keys by marking them as
“sengtive’ or “unextractable’. Sendtive keys cannot be reveded in plaintext off the token,
and unextractable keys cannot be revedled off the token even when encrypted (though they
can gill be used as keys).

It is expected that access to private, sendtive, or unextractable objects by means other than
Cryptoki (e.g., other programming interfaces, or reverse engineering of the device) would be
difficullt.

If a device does not have a tamper-proof environment or protected memory in which to store
private and sengitive objects, the device may encrypt the objects with a master key which is
perhaps derived from the user’s PIN. The particular mechanism for protecting private objects
is |eft to the device implementation, however.

Based on these featuresiit should be possible to design applications in such away that the token
can provide adequate security for the objects the gpplications manage.

Of course, cryptography is only one element of security, and the token is only one component in
a sysem. While the token itsedf may be secure, one must dso consder the security of the
operating system by which the gpplication interfaces to it, egpecidly since the PIN may be
passed through the operating system. This can make it easy for a rogue application on the
operating sysem to obtain the PIN; it is aso possble that other devices monitoring

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

32 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

communication lines to the cryptographic device can obtain the PIN. Rogue applications and
devices may aso change the commands sent to the cryptographic device to obtain services
other than what the gpplication requested.

It isimportant to be sure that the system is secure againgt such attack. Cryptoki may well play a
role here; for ingtance, atoken may be involved in the “booting up” of the system.

We note that none of the attacks just described can compromise keys marked “sensitive,” since
a key tha is sengtive will dways remain sendtive. Smilarly, akey that is unextractable cannot
be modified to be extractable.

An gpplication may adso want to be sure that the token is “legitimate’ in some sense (for a
variety of reasons, including export restrictions and basic security). Thisis outsde the scope of
the present sandard, but it can be achieved by digtributing the token with a built-in, certified
public/private-key pair, by which the token can prove its identity. The certificate would be
sgned by an authority (presumably the one indicating that the token is “legitimate’) whose public
key is known to the application. The gpplication would verify the certificate and chalenge the
token to proveitsidentity by Sgning atime-varying message with its built-in private key.

Once a normd user has been authenticated to the token, Cryptoki does not restrict which
cryptographic operations the user may perform; the user may perform any operation supported
by the token. Some tokens may not even require any type of authentication to make use of its

cryptographic functions.

8. Platform- and compiler-dependent directivesfor C or C++

There is alarge array of Cryptoki-related data types which are defined in the Cryptoki header
files Certain packing- and pointer-related aspects of these types are platform- and compiler-
dependent; these aspects are therefore resolved on a platform-by-platform (or compiler-by-
compiler) basis outsde of the Cryptoki header files by means of preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives must be issued
before including a Cryptoki header file. These directives are described in the remainder of
Section 8.

8.1 Structure packing

Cryptoki structures are packed to occupy as little space as is possible. In particular, on the
Win32 and Winl6 platforms, Cryptoki structures should be packed with 1-byte dignment. Ina
UNIX environment, it may or may not be necessary (or even possible) to dter the byte-
adignment of Structures.

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++

8.2 Pointer-related macros

Because different platforms and compilers have different ways of degling with different types of
pointers, Cryptoki requires the following 6 macros to be set outside the scope of Cryptoki:

CK_PTR

CK_PTRisthe “indirection gring” a given platform and compiler uses to make a pointer to an
object. Itisusad in the following fashion:

typedef CK_BYTE CK_PTR CK_BYTE_PTR
CK_DEFINE_FUNCTION

CK_DEFI NE_FUNCTI ON(r et urnType, nane), when followed by a parentheses-
enclosed lig of arguments and a function definition, defines a Cryptoki APl function in a
Cryptoki library. r et ur nType isthe return type of the function, and nane isitsname. Itis
usd in the following fashion:

CK_DEFI NE_FUNCTION(CK_RV, C_Initialize)(
CK VA D_PTR pReserved

)
{

}
CK_DECLARE_FUNCTION

CK_DECLARE_FUNCTI ON(r et urnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a Cryptoki AP function in a
Cryptoki library. r et ur nType isthe return type of the function, and nane isitsname. Itis
usd in the following fashion:

CK_DECLARE_FUNCTI ON(CK_RV, C Initialize)(
CK VO D_PTR pReserved

)
CK_DECLARE_FUNCTION_POINTER

CK_DECLARE_FUNCTI ON_PO NTER(r et urnType, nane),whenfollowedby a
parentheses-enclosed ligt of arguments and a semicolon, declares a varigble or type which is a
pointer to a Cryptoki API function in a Cryptoki library. r et ur nType isthe return type of
the function, and name isitsname. It can be used in either of the following fashionsto define a
function pointer variable, myC I ni ti al i ze, which can point to a C_Initialize functionin

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

33

34 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

a Cryptoki library (note that neither of the following code snippets actudly assigns a vdue to
myC Initialize):

CK_DECLARE_FUNCTI ON_POI NTER(CK_RV, myC I nitialize)(
CK_ VA D_PTR pReserved

)
or:

t ypedef CK_DECLARE_FUNCTI ON_PO NTER(CK_RYV,
myC InitializeType)(
CK VO D_PTR pReserved

)
myC InitializeType myC Initialize;

CK_CALLBACK_FUNCTION

CK_CALLBACK_FUNCTI ON(returnType, nanme), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which is a
pointer to an gpplication calback function that can be used by a Cryptoki APl function in a
Cryptoki library. r et ur nType isthe return type of the function, and name isitsname. It
can be used in ather of the following fashions to define a function pointer variable,
my Cal | back, which can point to an gpplication calback which takes alguments ar gs and
returns a CK_RV (note that neither of the following code snippets actudly assigns avaue to
my Cal | back):

CK_CALLBACK_FUNCTI ON(CK_RV, myCal | back) (args);
or:
t ypedef CK_CALLBACK_FUNCTI ON(CK_RV,
myCal | backType) (args);
myCal | backType myCal | back;
NULL _PTR

NULL_PTR is the vaue of a NULL pointer. In any ANS C environment—and in many
othersaswell—NUL L _PTR should be defined smply asO.

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++ 35

8.3 Sample platform- and compiler-dependent code

8.3.1 Win32

Developers usng Microsoft Developer Studio 5.0 to produce C or C++ code which
implements or makes use of a Win32 Cryptoki .dll might issue the following directives before
including any Cryptoki header files:

#pragma pack(push, cryptoki, 1)
#define CK_ | MPORT_SPEC _ decl spec(dllinmport)

/| * Define CRYPTOKI _EXPORTS during the build of
crypt oki

* libraries. Do not define it in applications.
*/

#1 fdef CRYPTOKI _EXPORTS

#defi ne CK_EXPORT_SPEC __ decl spec(dl | export)

#el se

#defi ne CK_EXPORT_SPEC CK | MPORT_SPEC

#endi f

/* Ensures the calling convention for Wn32 builds */
#define CK CALL_SPEC _ cdecl

#define CK PTR *

#define CK _DEFI NE_FUNCTI ON(returnType, nane) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC narme

#defi ne CK_DECLARE_FUNCTI ON(returnType, nane) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC narme

#defi ne CK_DECLARE_FUNCTI ON_PO NTER(returnType, nane)
\
returnType CK_ I MPORT_SPEC (CK_CALL_SPEC CK_PTR hamne)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType (CK_CALL_SPEC CK_PTR nane)

#i f ndef NULL_PTR

#define NULL PTR O
#endi f

After incdluding any Cryptoki heeder files, they might issue the following directives to reset the
Sructure packing to its earlier vaue:

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

36 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#pragma pack(pop, cryptoki)
8.3.2 Winl6

Developers using a pre-5.0 version of Microsoft Developer Studio to produce C or C++ code
which implements or makes use of a Winl16 Cryptoki .dil might issue the following directives
before including any Cryptoki header files:

#pragma pack(1l)
#define CK PTR far *

#define CK _DEFI NE_FUNCTI ON(returnType, nane) \
returnType __export _far _pascal nane

#defi ne CK_DECLARE_FUNCTI ON(returnType, nane) \
returnType __export _far _pascal nane

#defi ne CK_DECLARE_FUNCTI ON_PO NTER(returnType, nane)
\
returnType __export _far _pascal (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType _far _pascal (* nane)

#1 f ndef NULL_PTR
#define NULL PTR O
#endi f

8.3.3 Generic UNIX

Deveopers paforming generic UNIX development might issue the following directives before
including any Cryptoki header files

#define CK PTR *

#define CK _DEFI NE_FUNCTI ON(returnType, nane) \
returnType nane

#defi ne CK_DECLARE_FUNCTI ON(returnType, nane) \
returnType nane

#defi ne CK_DECLARE_FUNCTI ON_PO NTER(returnType, nane)
\
returnType (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

9. GENERAL DATA TYPES 37

returnType (* nane)

#1 f ndef NULL_PTR
#define NULL PTR O
#endi f

9. General datatypes

The generd Cryptoki data types are described in the following subsections. The data types for
holding parameters for various mechanisms, and the pointers to those parameters, are not
described here; these types are described with the information on the mechanisms themsalves, in
Section 11.17.2.

A C or C++ source filein a Cryptoki gpplication or library can define dl these types (the types
described here and the types that are specificaly used for particular mechanism parameters) by
incdluding the top-leve Cryptoki include file, pkcs11. h. pkcs11. h, inturn, indudes the
other Cryptoki include files, pkcs11t . h and pkcs11f. h. A sourcefile can dso include
just pkcsl1llt. h (ingead of pkcs1l. h); this defines most (but not al) of the types
specified here.

When incuding ether of these heeder files a source file must specify the preprocessor
directivesindicated in Section 8.
9.1 General information

Cryptoki represents generd information with the following types:

CK_VERSION; CK_VERSION_PTR

CK_VERSION is a dructure that describes the version of a Cryptoki interface, a Cryptoki
library, or an SSL implementation, or the hardware or firmware verson of adot or token. It is
defined as follows:

typedef struct CK VERSI ON {
CK_BYTE mmj or;

CK_BYTE m nor;
} CK_VERSI ON;

Thefidds of the Sructure have the following meanings:
maj or mgor verson number (the integer portion of the verson)

minor minor version number (the hundredths portion of the
verson)

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

38 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For version 1.0, major = 1 and minor = 0. For verson 2.1, major = 2 and minor = 10.
Table 9 beow ligs the mgor and minor verson vaues for the officidly published Cryptoki
Specifications.

Table 9, Major and minor version valuesfor published Cryptoki specifications

Version | maor | minor
1.0 0x01 0x00
2.01 0x02 0x01
2.10 0x02 Ox0a
211 0x02 OxOb

Minor revisons of the Cryptoki standard are dways upwardly compatible within the same
maor verson number.

CK_VERSION_PTR isapointer toaCK_VERSION.

CK_INFO; CK_INFO_PTR

CK_INFO provides generd information about Cryptoki. It isdefined asfollows:

typedef struct CK_|I NFO {
CK_VERSI ON crypt oki Ver si on;
CK_UTF8CHAR manufacturerl D[32];
CK_FLAGS fl ags;
CK_UTF8CHAR | i braryDescri ption[32];
CK_VERSI ON | i braryVersi on;

} CK_I NFO

Thefieds of the sructure have the following meanings:

cryptokiVersion Cryptoki interface verson number, for compatibility with
future revisons of thisinterface

manufacturer|D ID of the Cryptoki library manufacturer. Must be padded
with the blank character (* *). Should not be null-
terminated.

flags it flags reserved for future versons. Must be zero for this
verson

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

9. GENERAL DATA TYPES 39

libraryDescription character-string description of the library. Must be
padded with the blank character (* *). Should not be null-
terminated.

libraryVersion Cryptoki library verson number

For libraries written to this document, the value of cryptokiVersion should be 2.11; the vaue of
libraryVersion isthe verson number of the library software itself.

CK_INFO_PTR isapointer toaCK_INFO.

CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an
goplication. It isdefined as follows:

t ypedef CK_ULONG CK_NOTI FI CATI ON;

For this verson of Cryptoki, the following types of notifications are defined:
#def i ne CKN_SURRENDER 0

The natifications have the following meanings:

CKN_SURRENDER Cryptoki is surrendering the execution of afunction
executing in a sesson so that the gpplication may perform
other operations. After performing any desired operations,
the gpplication should indicate to Cryptoki whether to
continue or cancel the function (see Section 11.17.1).

9.2 Slot and token types

Cryptoki represents dot and token information with the following types:

CK_SLOT_ID; CK_SLOT_ID_PTR
CK_SLOT_ID isaCryptoki-assgned vaue that identifiesadot. 1t isdefined asfollows

typedef CK _ULONG CK _SLOT_ I D;

A lig of CK_SLOT IDs is retuned by C _GetSotList. A priori, any vadue of
CK_SLOT_ID can be avdid dot identifier—in particular, a system may have a dot identified
by the value 0. It need not have such adot, however.

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

40 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_SLOT_ID PTR isapointertoaCK_SLOT _ID.

CK_SLOT_INFO; CK_SLOT_INFO_PTR
CK_SLOT_INFO providesinformation about adot. It isdefined asfollows.

typedef struct CK SLOT_I NFO {
CK_UTF8CHAR sl ot Descri ption[64];
CK_UTF8CHAR manuf acturerl D[32];
CK_FLAGS fl ags;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON firmnar eVer si on;

} CK_SLOT_I NFG;

Thefidds of the sructure have the following meanings:

dotDescription character-string description of the dot. Must be padded
with the blank character (* *). Should not be null-
terminated.

manufacturer|D ID of the dot manufacturer. Must be padded with the
blank character (* *). Should not be null-terminated.

flags hitsflagsthat provide capabilities of the dot. Theflagsare
defined below

hardwareVersion verson number of the dot’s hardware
firmwareVersion verdon number of the dot's firmware

The following table defines the flags fidd:

Table 10, Sot Information Flags

Bit Flag M ask M eaning

CKF_TOKEN_PRESENT 0x00000001 | TRUE if atoken is present in the dot
(e.g., adeviceisin the reader)

CKF_REMOVABLE DEVICE | 0x00000002 | TRUE if the reader supports removable
devices

CKF_HW _SLOT 0x00000004 | TRUE if the dot isahardware dot, as
opposed to a software dot implementing
a " soft token”

Copyright © 1994-2001 RSA Security Inc. Revision 1, November 2001

9. GENERAL DATA TYPES 41

For a given dat, the vaue of the CKF_REMOVABLE_DEVICE flag never changes. In
addition, if thisflag is not set for a given dot, then the CKF_TOKEN_PRESENT flag for that
dotis always set. That is, if a dot does not support a removable device, then that dot dways
hasatokeninit.

CK_SLOT_INFO_PTR isapointer toaCK_SLOT_INFO.

CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO provides information about atoken. It isdefined asfollows:

typedef struct CK _TOKEN_ I NFO {
CK_UTF8CHAR | abel [32];
CK_UTF8CHAR manuf acturerl D[32];
CK_UTF8CHAR nodel [16] ;
CK_CHAR seri al Nunmber [16] ;
CK_FLAGS fl ags;
CK_ULONG ul MaxSessi onCount ;
CK_ULONG ul Sessi onCount ;
CK_ULONG ul MaxRwSessi onCount ;
CK_ULONG ul RwSessi onCount ;
CK_ULONG ul MaxPi nLen;
CK_ULONG ul M nPi nLen;
CK_ULONG ul Tot al Publ i cMenory;
CK_ULONG ul FreePubl i cMenory;
CK_ULONG ul Tot al Pri vat eMenory;
CK_ULONG ul FreePrivat eMenory;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON firmnar eVer si on;
CK_CHAR ut cTi ne[16] ;

} CK_TOKEN_I NFO,

Thefidds of the gructure have the following meanings:

label application-defined |abel, assigned during token
initidization. Must be padded with the blark character (*
‘). Should not be null-terminated.

manufacturer|D ID of the device manufacturer. Must be padded with the
blank character (* *). Should not be null-terminated.

model model of the device. Must be padded with the blank
character (*). Should not be null-terminated.

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

42 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

serial Number

flags

ulMaxSessionCount

ul SessionCount

ulMaxRwSessionCount

ul RwSessionCount

ulMaxPinLen
ulMinPinLen

ul Total PublicMemory

ulFreePublicMemory

ul Total PrivateMemory

ulFreePrivateMemory

hardwareVersion
firmwareVersion

utcTime

Copyright © 1994-2001 RSA Security Inc.

character-gtring serid number of the device. Must be
padded with the blank character (* *). Should not be null-
terminated.

bit flags indicating capakilities and status of the device as
defined below

maximum number of sessons that can be opened with the
token a one time by a single gpplication (see note below)

number of sessonsthat this gpplication currently has open
with the token (see note below)

maximum number of read/write sessons that can be
opened with the token a one time by a sngle application
(see note below)

number of read/write sessons that this gpplication currently
has open with the token (see note below)

maximum length in bytes of the PIN
minimum length in bytes of the PIN

the total amount of memory on the token in bytesin which
public objects may be stored (see note below)

the amount of free (unused) memory on the token in bytes
for public objects (see note below)

the total amount of memory on the token in bytesin which
private objects may be stored (see note below)

the amount of free (unused) memory onthe token in bytes
for private objects (see note below)

verson number of hardware
verson number of firmware

current time as a character-gtring of length 16, represented
in the format YY'Y'Y MMDDhhmmssxx (4 characters for
theyear; 2 characters each for the month, the day, the
hour, the minute, and the second; and 2 additiond reserved
‘0’ characters). The vdue of thisfied only makes sense

Revision 1, November 2001

9. GENERAL DATA TYPES 43

for tokens equipped with a clock, asindicated in the token
information flags (see Table 11)

Revision 1, November 2001 Copyright © 1994-2001 RSA Security Inc.

44 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following table defines the flags fidd:

Table 11, Token Information Flags

Bit Flag

M ask

Meaning

CKF_RNG

(0x00000001

TRUE if thetoken
has its own random
number generator

CKF_WRITE_PROTECTED

(0x00000002

TRUE if thetokenis
write-protected (see
below)

CKF_LOGIN_REQUIRED

0x00000004

TRUE if there are

some cryptographic
functions that a user
must be logged into

perform

CKF_USER_PIN_INITIALIZED

(0x00000008

TRUE if the normd
user’s PIN has been
initidized

CKF_RESTORE_KEY_NOT_NEEDED

(0x00000020

TRUE if a
successful save of a
sesson's
cryptographic
operations state
always containsal
keys needed to
restore the state of
the sesson

CKF_CLOCK_ON_TOKEN

(0x00000040

TRUE if token has
its own hardware
clock

CKF_PROTECTED_AUTHENTICATION_PATH

0x00000100

TRUE if token has a
“protected
authentication path”,
whereby auser can
log into the token
without passing a
PIN through the
Cryptoki library

Copyright © 1994-2001 RSA Security Inc.

Revision 1, November 2001

9. GENERAL DATA TYPES

45

Bit Flag

M ask

Meaning

CKF_DUAL_CRYPTO OPERATIONS

0x00000200

TRUE if agngle
sesson with the
token can perform
dud cryptographic
operations (see
Section 11.13)

CKF_TOKEN_INITIALIZED

0x00000400

TRUE if thetoken
has been initidized
using

C InitidizeToken or
an equivaent
mechanism outsde
the scope of this
gandard. Calling
C_InitidizeToken
when thisflag is st
will cause the token
to berenitiaized.

CKF_SECONDARY_AUTHENTICATION

(0x00000800

TRUE if the token
supports secondary
authentication for
private key objects.
(Deprecated; new
implementations
must never st this
flag to TRUE)

CKF_USER_PIN_COUNT_LOW

0x00010000

TRUEif an

incorrect user login
PIN has been
entered at least once
sncethe last
successful
authentication.

CKF_USER_PIN_FINAL_TRY

0x00020000

TRUE if supplying
an incorrect user
PIN will it to
become locked.

Revision 1, November 2001

Copyright © 1994-2001 RSA Security Inc.

46 PKCS#11 v2.11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Bit Flag

M ask

Meaning

CKF_USER_PIN_LOCKED

(0x00040000

TRUE if the user
PIN has been
locked. User login
to the token is not

possible.

CKF_USER PIN_TO BE_CHANGED

(0x00080000

TRUE if the user
PIN vaueisthe
default value st by
token initidization or
meanufacturing, or
the PIN has been
expired by the card.

CKF_SO_PIN_COUNT_LOW

0x00100000

TRUE if an

incorrect SO login
PIN has been
entered at least once
sncethelast
successful
authentication.

CKF_SO _PIN_FINAL_TRY

0x00200000

TRUE if supplying
an incorrect SO
PIN will it to
become locked.

CKF_SO_PIN_LOCKED

0x00400000

TRUE if the SO
PIN has been
locked. User login
to the token is not
possible.

CKF_SO_PIN_TO_BE_CHANGED

0x00800000

TRUE if the SO
PIN vaueisthe
default value st by
token initidization or
manufacturing, or
the PIN has been
expired by the card.

Copyright © 1994-2001 RSA Security Inc.

Revision 1, November 2001

9. GENERAL DATA TYPES 47

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki. An
gpplication may be unable to perform certain actions on a write-protected token; these actions
can include any of the following, anong others.

Cresting/modifying/deleting any object on the token.
Creating/modifying/deleting a token object on the token.
Changing the SO's PIN.

Changing the normd user's PIN.

The token may change the vaue of the CKF_WRITE_PROTECTED flag depending on the
sesson date to implement its object management policy. For instance, the token may set the
CKF_WRITE_PROTECTED flag to TRUE unlessthe session state is R'W SO or R/W User
to implement a policy that does not dlow any objects, public or private, to be created,
modified, or deleted unlessthe user is has successtully called C_Login.

The CKF_USER_PIN_COUNT_LOW, CKF_USER_PIN_COUNT_LOW,
CKF_USER_PIN_FINAL_TRY, and CKF_SO_PIN_FINAL_TRY flags may dways be
st to FALSE if the token does not support the functiondity or will not reved the information
because of its security palicy.

The CKF_USER PIN_TO BE_CHANGED and CKF_SO PIN TO BE_CHANGED
flags may aways be set to FALSE if the token does not support the functiondity. If aPIN is set
to the default value, or has expired, the appropriate CKF_USER_PIN_TO BE_CHANGED
or CKF_SO PIN_TO BE_CHANGED flag is set to TRUE. When ether of these flags are
TRUE, logging in with the corresponding PIN will succeed, but only the